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Abstract

This project involves the examination of real-time eco-driving data that enables users to
make pre-trip and on-route decisions when driving as to the optimal route to take. The basis
of this project is to estimate how efficiently drivers are performing in relation to fuel
consumption per kilometer. The analysis uses details on the vehicle specification, in terms
of fuel efficiency, and relates this to the distance travelled to provide the user with
information on the efficiency per KM travelled. Eco-driving involves the training of
individuals to change their driving patterns and to adapt to driving conditions. This project
examines data collected by TomTom in the Netherlands and measures the emissions saved

by providing eco-driving information.

The PEACOX project has set grounds for managing eco-friendly driving issues more efficiently
along with their other set targets. One of the aims is to provide information to travellers
about safer routes in terms of exposure. Studies showed that a reduction in exposure to
particulate matter (PM10) could reduce premature deaths significantly and, could also offer
a healthy environment for travelling. Thus, PM10 has been chosen as a generic pollutant
whose concentration level indicates the level of exposure in the routes. In order to estimate

exposure concentrations, exposure models were built.

To carry out the task, PM10 concentration has been estimated for Dublin and Vienna using a
Landuse regression model approach. Routine monitoring PM10 data has been used for
building models where explanatory variables included weather, land use, topographic and
demographic information. After model validation, a neural network was also used to obtain
the best fit model, optimising the relationship between response and explanatory variables.
This was necessary to offset the limitation of using the small number of PM10 monitors
available. Fourteen emissions maps for different days of the week over the summer and
winter seasons were predicted for each city. PM10 concentrations were then transferred to
the road network level to highlight the best route in terms of exposure level, or dose for

trips.
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1. Eco-driving model

1.1 Introduction

This first section of the deliverable relates to the results of the eco-plus (eco-driving) trial

conducted between Trinity College Dublin and TomTom.

In recent years many authors have written about the success of eco-driving and its ability to
reduce emissions and how it can be used as a tool to combat climate change. Barkenbus
(2010) suggests that eco-driving is the overlooked climate change initiative and that
following a policy of eco-driving can result in a 10% reduction in fuel consumption which will
have a knock on effect of reducing emissions. A range of studies have shown that the
benefits from eco-driving can range from a 5 to 20% reduction in emissions (Stillwater et al,
2012).

Beusen et al (2009) examined 10 cars over a 10-month period after taking a course, which
provided them with eco-driving training. The authors found that drivers on average had a
5.8% reduction in fuel usage. However, the study showed that the fuel savings reduced over
time and drivers went back to their original habits. Delhomme et al (2013) conducted a
survey of French drivers to ascertain their opinions in relation to eco-driving and how they
feel about adopting eco-driving styles. The findings show that generally respondents said it
would be easy to adapt to the eco-driving styles. The results did show that younger and

middle aged drivers said it may be difficult to adapt to the driving styles.

Boriboonsomsin et al (2011) conducted a study of 20 drivers in Southern California using an
on-board eco-driving feedback tool. The findings of the study showed modest increases in
fuel economy of 6% for urban streets and 1% on motorways. This was attributed increased
congestion in the area. Martin et al (2013) conducted a study of 18 drivers in California
using on-board feedback for eco-driving. The study took a similar approach to the one
reported in this deliverable in that the devices were turned off for the first month and then
switched on to give drivers feedback on driving style. Similar to the results found in
Boriboonsomsin et al (2011), the authors show that modest improvements in fuel efficiency.
In 2012, Martin et al (2012) conducted a longitudinal study of a sample of participants in

California. This study surveyed participants over three time intervals to determine if eco-
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driving behavior would last in the long run using information from an eco-driving website.
The study looked at before and after information on how the study worked. The results
showed that more than half of the sample improved their eco-driving behavior and that
females, those living in smaller households and those with newer cars were more likely to

improve eco-driving behavior.

Stillwater and Kurani (2012) employed the theory of planned behavior to examine how
driving behaviors change using an on-board eco-driving feedback tool. The findings showed
that that setting goals for participants and real-time feedback resulted in drivers increasing
their fuel efficiency. Rutty et al (2013) examined the impacts of eco-driving on Calgary’s
municipal fleet. In the study fifteen drivers in a study to reduce the emissions associated
with vehicle idling. The results of the study showed that average vehicle idling was reduced
by between 4% and 10% per day. Other road users have been examined to ascertain if eco-
driving can be applied to public transport drivers. Sromberg and Karlsson (2013) examined
bus drivers in Sweden using in vehicle feedback tools to reduce harsh acceleration. The
findings of the study showed that a 6.8% reduction in fuel usage occurred in the study

period.

The research presented in this section shows the benefits of eco-driving, while the results
are modest; it shows how eco-driving strategies can be successful. While as mentioned
these results were modest they these policies can be used in a suite of policies to reduce

emissions.

1.2 Methodology

1.2.1 Data Collection

The eco-driving trial started in January 2012 and the results presented in this report track

the vehicles up to October 2012. Five different groups were analyzed during the trial period.

Group A: This group had 82 users and these users were provided with on-board active

driver feedback for the duration of the trial and access to webfleet online.

Group B: This group had 27 users and these users were provided with on-board active driver
feedback for the duration of the trial and from the 1% of July 2012 were given access to

webfleet online.
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Group C: This group had 27 users and for the first two months had no interventions. Then

this group was given both on-board active driver feedback and webfleet online.

Group D: This group had 16 users and was not given any on-board information. This group

was given webfleet online from March 2012.

Group E: This group had 15 users and they received no information at all on driving style.

This group was used a reference group to compare the other groups.

Table 1 presents a description of the trip characteristics of those participants in each of the
groups in the trial. Table 1 presents the average of the sample and the standard deviation of
the characteristic. The standard deviation provides an indication of the range in the values
recorded. The results show that characteristics such as average daily travel distance and the
number of trips are similar, this indicates that the comparisons preformed later in the report

are based upon drivers with similar characteristics.

Group A Group B Group C Group D Group E
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
Number of | 3.4 2.0 3.2 2.0 3.6 2.0 3.4 1.9 3.4 1.8
trips
Distance 56.8 64.6 61.2 72.8 | 57.3 66.5 | 69.0 79.7 | 49.0 63.1
(in KMm)
Driving 59 50 62 56 59 51 69 60 55 47
time (in
mins)
Fuel usage | 3 34 3.5 4.2 3.2 3.7 3.7 4.5 2.8 3.4
(in liters)
Idle time | 9 8 12 11 13 16 13 15 22 18
(in mins)
Average 3 4 4 7 5 6 5 6 3 6
time spent
speeding
(in mins)

Table 1 Description of data collected
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1.3 Eco-driving model

This section of the deliverable presents the model schematic used to analyze the results of
the eco-plus trial. Figure 1 shows the model schematic. The model shows that the eco-
driving interventions of on-line driver feedback and on-board driver feedback are used to
improve driving style. The success of these interventions is then measured by monitoring the
reductions in idling time, fuel consumption and speeding. These then all have an over all
impact on the reductions in emissions. This model is tested in the next section and the

results are presented.

Eco-driving
interventions

Reduce idling

On-line driver
feedback

Reduced fuel
consumption emissions
and fuel
consumption

User Groups

On-board
driver
feedback

Reduced
speeding

Figure 1 Eco-driving Model

1.4 Analysis and Results

1.4.1 Reductions in CO2

The following section reports the reductions in CO2 emissions from each of the five groups
examined in the trial. In order to examine what if any reductions in CO2 occurred the

emissions from the first two weeks of driving were averaged and used a baseline to compare
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subsequent weeks for reductions in emissions. Figures 2 — 6 present the findings for the
average reductions in CO2 emissions per KM for each of the 37 weeks of the trial. The
results for each of the groups show that there was a decrease in CO2 emissions per KM
driven. The results from each of the groups are also presented in Tables 2-4 and more

discussion of the results is presented in section 4.2.

Reduction in CO2 - Group

M Reduction in CO2 - Group A

Figure 2 Reduction in CO2 - Group A
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Reduction in CO2 - Group B

B Reduction in CO2 - Group B

Figure 3 Reduction in CO2 - Group B

Reduction in CO2 - Group C

M Reduction in CO2 - Group C

Figure 4 Reductions in CO2 - Group C
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Reduction in CO2 - Group D

-0,12

-0,14

-0,16

-0,18

B Reduction in CO2 - Group D

Figure 5 Reductions in CO2 - Group D

Reduction in CO2 - Group E

B Reduction in CO2 - Group E

Figure 6 Reductions in CO2 - Group E
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Tables 2 — 4 present similar data to that shown in Figures 1-5. The results show the values
for emissions per KM in average emissions and the standard deviation (S.D.). The results
presented in the table show the first two-week average and then the data is broken down
into 5-week periods to show the changes in emissions over time. The results show that for
Group A that there is a drop in emissions from week 13 to week 27 and then there is a
rebound and the average emissions increases. The results for Group B show that there is a
steady drop in the average emissions in the first 12 weeks of the trial. From week 13 to 22
the results show a greater decline in the average CO2 emissions per KM compared to the
other time periods. This time period was when those in Group B were provided with
information via webfleet. The results for Group C also show a steady decline in the average
CO2 emissions. This group was provided with on-board information and webfleet from week
8. The results show that from week 8 there was a decrease in average emissions. The
findings for Group D show that from week 12, when the participants got access to webfleet,
that a decrease in average emissions was experience by those in this group. Group E was
used as the reference group in this study, as they were given no extra information on driving
performance. As one would expect there was little change in the over all average CO2

emissions per KM in this group.

Weeks Group A Group B Group C Group D Group E
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
1&2 133 6.2 138 2.1 144 0.6 144 3.1 142 7.2
3-7 135 6.7 135 2.9 137 3.0 137 2.7 138 35
8-12 136 10.4 133 35 135 2.3 134 2.4 132 2.4
13-17 130 1.2 130 2.9 133 37 131 31 139 5.5
18-22 131 35 130 2.7 134 3.7 128 2.9 138 3.9
23-27 130 35 133 21 135 3.5 128 2.8 142 6.7
28-32 136 37 134 4.6 135 1.2 125 25 138 6.2
33-37 136 1.7 133 34 132 2.8 128 2.6 141 4.1

Table 2 Overall reductions in CO2 emissions per KM

In order to ascertain if drivers had different behavior on weekends compared to weekdays

the dataset was divided between weekdays and weekends to determine if there was any
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difference. Table 3 presents the results for the weekends and Table 4 presents the results

for weekdays.

average emissions on weekends.

The findings for Group A shows that on average participants had higher

The results from Group B also show a similar trend with

higher average emissions on weekends compared to weekdays.

shown for Groups C, D and E.

Weeks Group A Group B Group C Group D Group E
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
1&2 134 54 142 6.8 135 24.3 162 17.3 136 1.0
3-7 138 4.2 143 7.3 147 9.2 142 14.3 147 4.9
8-12 137 4.3 139 5.3 129 11.7 137 4.4 135 2.5
13-17 135 2.1 133 5.0 139 4.4 130 4.5 138 8.7
18-22 137 3.7 129 2.0 139 1.5 129 7.3 144 6.1
23-27 137 4.9 129 6.4 139 5.9 128 1.8 150 | 231
28-32 138 29 138 6.4 133 6.6 126 7.6 138 7.7
33-37 136 6 140 5.7 131 4.9 130 1.8 146 8.3
Table 3 Reductions in CO2 emissions - Weekends
Weeks Group A Group B Group C Group D Group E
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

1&2 119 10.0 134 12.1 134 | 14.6 133 7.4 143 7.6
3-7 133 17.1 135 3.9 137 6.2 138 1.8 136 3.8
8-12 136 14.0 132 3.6 136 4.8 138 1.9 131 3.2
13-17 125 7.8 129 2.1 132 2.9 132 3.1 138 6.1
18-22 123 14.8 124 16.4 134 3.9 127 5.2 137 5.1
23-27 120 17.1 120 23.8 134 3.9 128 4.6 138 5.1
28-32 136 3.2 136 7.4 134 4.6 125 2.8 136 6.7
33-37 135 2.3 139 5.8 132 2.7 127 1.2 139 4.3

Table 4 Reductions in CO2 emissions - Weekdays

These trends are also
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1.4.2 Comparison between results

This section of the report presents a comparison between the results found for each of the
groups to determine which interventions had the greatest impact upon CO2 emissions per
KM. Table 5 presents the findings of a comparison on the average weekly CO2 emissions
per KM from groups A-D and compared against group E. This set of results shows how each
of the test groups preforms against the control group. The results in Table 4, if positive show
that the control group being compared had a reduction in CO2 emissions in the week in
guestion compared to the control group. Whereas a negative result would indicate that that
the group being compared to the control group had higher average emissions per KM driven.
The results in Table 4 show that on average each of the test groups had a greater reduction
in CO2 emissions compared to the control sample. The results show that Group D
performed the best with an average reduction in emissions of 6% compared to the control
group. Groups A and B also had on average a 4% reduction in CO2 emissions compared to

the control group with those in group C having a 3% decrease in emissions.

Group A

Group B

Group ¢

Group D

Week 1

7%

1%

-5%

-3%

Week 2

8%

6%

2%

1%

Week 3

8%

3%

1%

2%

Week 4

3%

1%

0%

1%

Week 5

-7%

3%

2%

-1%

Week 6

3%

1%

0%

1%

Week 7

3%

2%

0%

0%

Week 8

-3%

-2%

-5%

-6%

Week 9

-2%

-5%

-2%

-2%

Week 10

-12%

1%

2%

1%

Week 11

3%

4%

-3%

-1%

Week 12

0%

0%

-2%

0%

Week 13

4%

6%

3%

2%

Week 14

7%

6%

8%

7%

Week 15

1%

4%

0%

-3%

Week 16

12%

10%

6%

14%

Week 17

10%

7%

6%

9%

Week 18

12%

13%

3%

14%

Week 19

7%

6%

1%

7%

Week 20

4%

4%

3%

3%

Week 21

4%

6%

7%

11%

Week 22

-1%

-1%

-2%

4%

Week 23

18%

18%

14%

22%

Week 24

5%

4%

-2%

11%

Week 25

14%

7%

8%

10%
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Week 26 6% 4% 5% 8%
Week 27 2% 1% 0% 5%
Week 28 -7% -3% -4% 6%
Week 29 -3% 5% -2% 4%
Week 30 3% -2% 1% 10%
Week 31 7% 8% 10% 15%
Week 32 7% 8% 5% 14%
Week 33 6% 9% 13% 15%
Week 34 1% 1% 2% 6%
Week 35 5% 8% 6% 12%
Week 36 1% 0% 5% 11%
Week 37 7% 11% 6% 8%

Average reduction
in CO2 Emissions

4%

4%

3%

6%

Table 5 Groups compared to control group

1.4.3 Minutes spent idling

One of the main bad habits that drivers display when driving is idling. This is when drivers

for one reason or another have the car engine running but the car is not moving. In this

study participants that were idling for periods of longer than 5 minutes, this data was

recorded. Those in participants were that were provided with on-board information would

have been provided with information on their idling. Figures 7-11 show the weekly average

amount of idling for each of the groups examined in the study. The results show that those

in groups A, B and C had lower rates of idling with a weekly average idling time of 8, 8 and 10

minutes respectively. Those in groups D and E were shown to have larger idling times of 12

and 23 minutes per week respectively. The results of this analysis shows that those in

groups receiving on-board information and substantially less idling times that those not

receiving this information.
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Figure 8 Average mins spent idling - Group B
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Figure 9 Average mins spent idling - Group C
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Figure 10 Average mins spent idling - Group D
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Average mins idling - Group E
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Figure 11 Average mins spent idling - Group E

1.5 Discussion and Conclusions

The results presented in this section of the deliverable show the success of the eco-plus

(eco-driving trial) conducted as part of the PEACOX project. The findings of the trial

conducted in the Netherlands concur with those presented in the international literature, in

that while the savings in emissions and fuel consumption were modest, they do represent a
significant reduction in emissions and a reduction in idling time.
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2. Emissions Exposure Model

2.1 Introduction

2.1.1 Background of the deliverable

Vehicle emission has an adverse impact on the environment at local and global scales. Many
of these pollutants are carcinogenic like benzene, and many cause respiratory problems (e.g.
PM2.5. NO2 and 03), cardiac admissions (e.g. PM) (Katsouyanni, et al., 2010) . Among them,
nitrogen dioxide (NO2) and particulate matter (PMx) are causes of concern for Europe.
Traffic has been considered as a primary source of NO2 and is also one of the main sources
for PM (O’Dwyer, 2011). Investigations noted that if PM10 concentration was reduced to 20
ug/m3 on all days, in Europe, it would lead to a decrease of 15 premature deaths per
1,00,000 inhabitants per year (Katsouyanni, et al., 2010).

The PEACOX project has set grounds for handling eco-friendly driving issues more efficiently
along with other set targets. The aim of the third work package of the PEACOX project is to
build models which will estimate emissions and exposure levels for travelers. A trip with an
origin and a destination may have many possible routes. Thus, the user will be able to
choose an option from a given set of options to peruse his/her journey for his/her

destination in safer and healthier ways.

2.1.2 Scope of the work package

The exposure model, under the task WP3.4, has been identified as city specific and thus,
requires building two different models for two cities (i.e. Dublin and Vienna). Considering

the primary aim of work package 3, the objectives of the work pack include:

Objective 1: Selection of appropriate approaches for exposure modelling in the current

context.
Objective 2: Apply the model’s outcome at route level.

Objective 3: Replicate the model for another city (Vienna).
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To carry out the objectives a lead model was developed based on Dublin city where different
approaches were tested top obtain a best fit model with the available data. The Vienna

model was then developed following the same methodology.

2.2 Selection of exposure modelling approach

2.2.1 Required features for exposure modelling at route level

Air pollution exposure concentration at a particular place is very complex and involves many
atmospheric chemical and local physical processes. Difficulties arise in developing models
that predict exposure concentrations for all over a city in real-time where the study area is
more than 100 square kilometres. Besides, the data availablity for building such a model is
often in low resolution e.g. daily PM count. In addition, citywide models require a large
number of monitoring stations that have been capturing data for a long period of time in the
same resolution. For instance, most of the monitors in Dublin city capture PM4y data on a
daily average basis. Thus, the highest resolution that model can capture is daily
concentration, at least for the Dublin city model. Therefore, the temporal resolution is
restricted to daily average. The level of exposure for a person to a particular pollutant, also
depends on the exposure duration as well as on the travel time of a person. The exposure
model is capable of providing real-time exposure ratings based on the breakdown of daily

exposure concentration and real-time travel time information for different routes.

2.2.2 Overview of the methodology

According to the methodology developed (see Figure 12), two different steps are involved in
the exposure models predictions. For the first level of analysis, it is necessary to estimate the
exposure concentration for every road link. For defining exposure concentration, land use
regression (LUR) can be used among the candidate models, which utilises the monitored
levels of the pollutant of interest as the dependent variable, and variables such as traffic,
topography, and other geographic variables are considered as independent variables in a
multivariate regression model (Gilliland et al., 2005; Ryan & LeMasters, 2008). The LUR
model is suitable for this research for following reasons: 1) The incorporation of site-specific
variables into this method detects small area variations more effectively than other methods
of interpolation (Briggs et al., 1997; Gilliland, et al., 2005); 2) the levels of pollution may then

be predicted for any location using a regression model (Ryan & LeMasters, 2008). Besides,
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the predictive performance of the LUR model is no less than that of alternatives such as

dispersion modeling (Gulliver, et al., 2011; Hoek, et al., 2008). The landuse regression will be

in the form of Equation (1).

E=Cy+AX, +A,X, + A, X, +E ;

(1)

Where, E = Exposure Concentration; X,= Traffic data; X, = Land use data ; X'; = Weather

data ; € = Error ; 4, = regressing coefficient.

Routes ID

{Recommendation Services)

| Real time travel time |

landuse and physical factors

data

Weather Emissions monitoring

data

| |

|

| Link exposure calculation

[

|

Exposure
Concentration at
roads

|

LUR Model

Exposure Mapping

Route based
exposure rating
identification

Figure 12 Methodology of the Model

The explanatory power for the LUR model was reported from R-squared .17 to .97 for

various types of pollutants. However, R-squared for PMyg ranges from .45-.90 for both model

calibration and validation (Hoek et al, 2008) in the reference studies. RMSE for PMy, by

Briggs’s et al. (2007, 2011) showed values of 6.7 and 3.3 respectively. With the limitation of

the number of Air Quality monitors available in Dublin, it is not expected that high accuracy

of the resulting of the models could be obtained. The spatial coverage of the monitors is

much lower than the recommended minimums in the areas of interest, 7 for 117 sq.km in

Dublin and 13 for 414.6 square km for Vienna.

The LUR model was developed based on the limited number of monitoring stations and the

model was used to predict exposure for selected different points of interest in the city.
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Those selections were based on grouping analysis. This technique generated a good number
of sites to extrapolate exposure concentration across the city area using the kriging
technique. The generated exposure maps were then intersected with road centroid lines in a

GIS environment.

Exposure level estimation is required for each route in order to integrate the model with
other components of the PEACOX project. The original exposure model (Landuse regression
model) provides exposure concentration along the route; however, a new derived factor
‘Dose’ may be required for rating the routes. The dose will indicate the level of exposure and
it is the amount of pollutant that someone inhales during travel, and thus, it is a function of
exposure concentration of a pollutant, travel time and inhalation rate. At the second level,
the technique was determined to calculate the exposure rating by following equation
(2):
D = [T C(8).8(t).IR(t,m).dt ; (2)

Here, D=dose (pg); 8(t)= Time factor (unitless); IR(t,m)= Inhalation rate (m>/hr) based on

mode; time in hour; and C(t)= pg/m?

The dose will be calculated for each alternative route. The total value calculated from
different modes provides the possible dose for each route. Although the outcome of the
modeling will provide dose, the value will be expressed for the users as a band score. The
level of concentration will be given in a scale rating where ‘A’ will indicate excellent travel
environment. Similarly, ‘B’ refers ‘Good’, ‘C’ indicates ‘Average’, ‘D’ as ‘Poor’, and ‘E’ refers
‘Unhealthy’ conditions. While there will be a number of alternative routes between an origin
and destination, dose (ug) for each alternative will be calculated and lower dose will be

rated as ‘A’ and so on.
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2.2.3

Selection of the pollutant

PM10 was selected for this task as a generic pollutant. Several reasons exist to justify

considering PM10 as a representative pollutant of air quality. PM is a known source

pollutant in traffic emissions as well as originating from re-entrained dusts, brake and tyre

wear, sea spray, combustions, etc. PM is one of the main pollutants of concern in Ireland as

well as in the EU and is monitored routinely by local governments across the EU.

224

Data Sources

A large quantity of data has been collected in order to build exposure models for Vienna and

Dublin. The sources of data include:

Environmental Protection Agency (EPA, 2012),
umweltbundesamt (umweltbundesamt, 2013),

Dublin City Council,

Met.ie,

Central Statistics Office (CSO, 2012),

Trinity College Dublin (internal source),

Dublinked (Dublinked, 2012),

Central institute for meteorology and geodynamics, Vienna, Austria (ZAMG, n'd),
GADM database of Global Administrative Areas (GADM, 2012),
Geofabrik GmbH (GmbH, 2012),

European Environment Agency (EEA, 2012a),

CGIAR (CGIAR, 2012).

2.3 Overview of the data for lead model

The concept of “Lead Model” has been included to avoid duplication of the same type of

information that has been generated in the building of Vienna Model. Details of the Dublin

exposure model have been included here in sections 3 to 5. This model is then followed by

the development of the Vienna Model.
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2.3.1 Geographical coverage of the Dublin Model (Lead model)
The geographical coverage of the Dublin city area is approx 115 sg.km. This area is under the

jurisdiction of the Dublin city council (Figure 13).
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Figure 13 Dublin City
Source: DCC

2.3.2 Air Quality monitoring stations and monitoring data
There are almost 15 Air Quality monitoring stations (both temporary and permanent) in the
greater Dublin area (Figure 14). However, only some of them are useful for building the

exposure model due to their longer temporal coverage of data.
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Figure 14 Air Quality Monitoring stations in Dublin City
Source: EPA

The number of Air Quality monitoring stations where PM1o data is available for LUR model
was seven: Ballyfermott, Coleraine Street, Knocklyon, Marino, PhoenixPark, Winetavern and
Ringsend (highlighted in Figure 15). There are also three weather monitoring stations

available in this area: Phoenix park, Casement at North and Dublin airport.
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Figure 15 Air Quality and Weather monitoring stations in Dublin City

2.3.3 Response and explanatory variables
The following variables were used to develop the regression equation:
Weather:

e Rainfall (Daily total-2007-2009)

e Wind direction (in Degree-2007-2009)

e Radiation (Daily Average-2007-2009)

e Stability index (Daily-2007-2009)

e Wind speed (Daily Average-2007-2009)

e Temperature (Daily Average-2007-2009)

e Humidity(Daily Average-2007-2009)

e Dew Point (Daily Average-2007-2009)

Physical Parameter:
e Distance from Coast (in km)
e Pollutant’s distance from the monitors (in km)

e Pollutant Angle(in Degree)
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e Population Number (2007-2009, estimated)

e Housing Stock (2007-2009, estimated)

e Road Length (in km, 2011)

e Digital Elevation Model (DEM)/Altitude (90m at the equator)

e Road types (Motorway and/or with link, Trunk and/or with link, Primary and/or with
link, Secondary, Tertiary)

e Land use type (commercial and open space, from land cover data, 2006)

2.3.4 Data management and processing

2.3.4.1 Data pre-processing and selection of data type:
ARCGIS, SPSS and Excel softwares were used to extract and process data for modelling.
Landuse:

The considered GIS dataset had a predefined land use category. To use these data for
modelling, several land use categories have been merged into groups. The land use data has
been recoded based on their impact on exposure concentration. Thus, two categories have
been identified that have spatial positive and negative relationships with the exposure

concentration.
e [ndustrial and commercial land use

e Open Space and water body ( Predefined categories were: Intertidal flats, Land
principally occupied by agriculture with significant areas of natural vegetation,

Pastures, Non-irrigated arable land, and Green urban areas)

PM10 Data:

As the data was limited in terms of monitoring station numbers, it was decided to use panel
data to achieve better results. However the following assessment shows that many years of
data were also missing. If we consider the data availability on the monitoring stations for the
period 2007-2009, this gives the best available option (2008-2010) to develop the LUR
Model.
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SL. Monitoring Sites for Data Available Period 2007-2009 Period 2008-2010 Resolution
Air Quality (PMy)
1 Ballyfermott * 2003-2010 - - Daily
2 Blanchardstown 2008-2009 2007 2010 Daily
3 Coleraine Street * 2001-2008 2009 2009,2010 Daily
4 DunlLaoghaire 2008-2010 2007 - Daily
5 Knocklyon 2008 2007,2009 2009,2010 Daily
6 Marino * 2001-2008 2009 2009,2010 Daily
7 PhoenixPark * 1996-98, ‘01-10 - - Daily
8 Rathmines * 1996-98, 2001, - - Daily
‘03-05, ‘07-10
9 Tallaght 2008-10 - - Daily
10 Winetavern * 2001-2010 - - Daily
11 Ringsend * 2009-10 2007,2008 2008 Daily
Interpretation 8 Missing years 8 Missing years

*Within study area.

Table 6 PM,, data availability in Dublin City

The following table (7) outlines the average exposure concentration is high in the central

areas (Coleraine Street and Winetavern street) and lowest at peripheries (Phoenix Park) in

Dublin as expected.

2007 2008 2009
. Minimum | Maximum | Average | Minimum | Maximum | Average | Minimum | Maximum | Average
Station 3 3 3 3 3 3 3 3 3
pg/m pg/m pg/m pg/m pg/m pg/m pg/m pg/m pg/m
Ballyfermott 2.64 78.47 14.82 2.50 43.19 11.64 1.53 46.10 12.44
Coleraine 431 75.28 18.43 4.58 93.47 18.54 - - -
Rathmines 1.20 87.92 16.69 1.00 101.30 16.91 2.36 59.58 14.74
Marino 1.67 74.31 13.41 2.50 75.00 12.62 - - -
PhoenixPark 1.53 66.19 11.72 1.39 59.44 10.74 2.08 38.89 10.19
Ringsend - - - - - - 5.20 36.52 14.40
Winetavern 3.19 93.47 18.30 1.69 82.36 17.49 1.39 55.83 17.29
Table 7 PMy, in different monitoring stations (2007-2009)
Wind Index:

Wind index is a strong determinant of pollutant concentration. The wind index has been

calculated (Chen et al., 2010) based on equation (3):
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_ (1-rco=(0-6)) (3)

- ’
e

Where, Wind Index= ¢ ; ¢ = Euclidian direction from the nearest major road to monitoring

site; # = Wind direction in respect of true north

Stability Class
Stability class refers to the state of the atmosphere that is resisting or enhancing vertical
motion. Different stability states can be categorised based on wind speed and solar

radiation. Stability class for Dublin was adopted here as an additional explanatory variable.

Weather data source selection

Weather data from Phoenix Park has been used primarily for model development, except for
solar radiation and wind data. Data from Dublin airport station has been used for these
latter two weather variables. Missing data in Phoenix Park have been replaced using Dublin

airport station’s data. The following Table 8 shows the variation of the weather data used in

the model.
2007 2008 2009
£ S o £ S o £ S o
S E|5E|§ o |EE |55 |8 « |55 |55 |8 o
s s L s = z S s S
Weather Variables
Temperature (C) -.16 17.77 10.25 -74 17.55 9.77 -.90 18.29 9.79
Humidity(%) 61.88 98.67 82.95 63.50 99.42 83.48 62.96 99.29 84.99
Dew Point (C) -3.35 14.87 7.31 -2.71 14.73 6.92 -4.42 16.44 7.21

Wind speed (m/s) | 1.52 13.95 5.66 1.78 14.34 5.94 1.22 14.04 5.68

Radiation (W/m?) | 158.61 | 1.02 51.20 2.47 113.90 | 33.15 1.09 123.41 | 38.20

Rainfall (mm) .00 51.60 - .00 58.70 - .00 38.80 -
Stability Class 4.00 5.00 - 4.00 5.00 - 4.00 5.00 -
Wind Index .00 1.00 .40 .00 1.00 .40 .00 1.00 .36

Table 8 Weather variables in Dublin Area (2007-2009)

Population and housing stock
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There was no data available for housing stock and population for the period of 2007-2009
for the areas of interest. However, the Census data were available for 2011 and 2006 for
population and housing stock and thus simple extrapolation has been used for estimating
data for 2007, 2008 and 2009. The resolution of the data is at the small area level (lowest

census boundary for Irish database).

2.3.4.2 Data extraction and sorting:

PM and weather data have been sorted in Excel software, whereas spatial data has been
extracted in a GIS environment. Different overlay data management tools, and spatial
analysis tools have been deployed to obtain data. To get information around the Air Quality
Monitoring stations buffer operations was used in GIS environment. A buffer in GIS is a zone
around a point measured in units of distance. The distance of the buffers for each attribute
(e.g. Population, road length) was determined based on relevant literature review and site
characteristics. The concept captures the physical properties of the areas that might have an
influence on the PM, concentration in the air quality monitoring stations. The following
buffer sizes (Figure 16) were considered to extract data from GIS shape files:

e Population Number/ Housing Stock/ Altitude --- 500m
e Road Length ----100m, 350m, 750m
e Land use Area according to type ----1000m
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Figure 16 Different buffer sizes around the Air Quality monitors in Dublin

Population and housing stock for buffers have been calculated based on densities of
population and housing stock in relevant small areas and the area covered by the buffer
boundary. The proportions of buffer area were multiplied by the density of the
corresponding small areas to determine population and housing stock for the year 2011
(Table 9). Later, back projection was conducted using a simple growth factor for determining
the values for 2007-2009 at each station. However, population and housing stock have been

considered constant for the phoenix park area (unpopulated national park).

Demographic Variables (500m buffer)

NAME Housing Stock 2011 Population 2011
Rathmines 5681 9295
Ballyfermot 2825 7184

Ringsend 917 2422
Winetavern Street 9698 18151
Coleraine Street 8663 16484
Phoenix Park 292 1039
Marino 2438 4472

Table 9 Demographic Variables within 500m buffer
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The land use and transportation variables around each station are given in tables 10 and 11.

s " < c

2 "’ L ] )

£ £ o = £ 2 >

Q © c c € g +

= o < 3 £ & 2

Landuse Variables 3 S S £ S = =

Coast Distance in km 9.50 2.79 4.17 .96 8.20 .20 3.05
Altitude average in meter (500m) 41.85 14.38 27.09 13.47 52.94 4.53 12.15
Commercial area in Sq.km(1000m) .66 .02 .00 .04 .00 .25 .39
Open Space area in sq. km(1000m) .08 .29 .00 .29 1.96 .02 .06

Table 10 Values of land use variables around each monitoring station

s | g ; g 5

£ £ o = £ 2 >

L © < c S 9 <

= g e S £ & c

Transportation variables 3 S S £ S = =

Major Road length in km(100m) .00 .19 .18 .35 .00 .40 44

Major Road length in km(350m) 1.70 1.84 1.26 1.43 .00 1.28 4.11
Major Road length in km(750m) 5.17 14.09 4.61 6.27 1.43 4.36 18.76

Minor Road length in km (350m) 3.17 2.65 2.53 2.73 1.10 1.95 4.14

Minor Road length in km (500m) 6.14 6.36 5.04 4.86 2.47 2.86 8.15

Nearest Major Road Distance (km) .18 .26 .06 .04 .53 .05 12

Table 11 Values of transportation variables around each monitoring station

2.3.4.3 Setting data for modelling

There were 7673 observations available for building the model. However, due to absence of

data in some variables, only 5535 observations were taken into account.

2.4 LUR modelling for Dublin

2.4.1 Land use regression models

The following important assumptions were made in the LUR model:
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e The physical characteristics of the seven Air Quality monitoring sites are a good

representation of the whole area.

e The land use and elevation data have been considered stationary over the years,
whereas population and housing stock number have been assumed as having a

constant growth rate.

To develop the LUR model the analysis was performed using R — statistical software. Having
the limitation of the number of routine monitoring sites and the number of observations, a
deviation has been used from the traditional approach of building an LUR model. For model
validation common approaches were either leaving one station and carry out the cross
validation for (n-1) times, or leaving a certain percent of the data for validation and establish
the model using the rest of the data. Here, a few models have been developed at the initial
stage and thus, best fitted models were redeveloped again with a certain percentage of the
dataset and thus, validated against the rest of the dataset. The best performed model was
then selected. The first model (M1) was developed with simple multivariate linear regression

(Fehler! Verweisquelle konnte nicht gefunden werden.) with all the available explanatory

variables.

Estimate Std. Error t value Pr(>it])
(Intercept) -1.205e+01 2.081e+01 -0.579 0.562519
temp 2.443e+00 8.263e-01 2.957 0.003117 ==
humidi 4,.971e-01 1.603e-01 3.101 0.001939 =**
dew_point -3.205e+00 8.390e-01 -3.821 0.000135 %**
wind_speed -1.169e+00 5.489e-02 -21.299 < 2e-16 ***
Radiation 1.372e-02 4.240e-03 3.235 0.001225 **
Rainfall -1.432e-01 2.193e-02 -6.529 7.2le-11 #*#*
stability_class 8.593e+00 4.689%e-01 18.326 < 2e-16 ***
coast_km 7.265e+01 2.640e+01 2.751 0.005952 *=
windINdex 1.489e+00 3.721e-01 4.001 6.39e-05 *%*
Altitude -1.308e+01 4.676e+00 -2.798 0.005167 **
commer -3.569e+02 1.356e+02 -2.633 0.008491 ==
Oopen_Area 2.310e+01 8.434e+00 2.739 0.006189 ==
mRd350_m 1.316e+02 5.301le+01 2.483 0.013074 *
mRdS00_m -5.744e+01 2.360e+01 -2.434 0.014968 *
RdAj750_m NA NA NA NA
Nearrdj_km NA NA NA NA
Rdj350_km NA NA NA NA
RAJ100_km NA NA NA NA
population -2.575e~03 1.805e-03 -1.426 0.153903
HS -4.917e-03 5.574e-03 -0.882 0.377747
Signif. codes: 0 ‘***' 0,001 ‘**' 0.01 ‘*" 0.05 ‘.’ 0.1 ¢

Table 12 Regression Model Output (Modell)
The model shows an adjusted R-squared of 0.35. That means the model can explain 35%
variability of the dataset. However, this model provides two insights: some variables have
illogically negative correlation (e.g. Commercial area should be an anthropological source of

PMy0) which might produce unrealistic results if chosen; secondly, four of the variables were
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not defined because of singularities i.e. an extreme form of multicollinearity/perfect linear
relationship exists between variables and these can be replaced. Therefore, this provides an
understanding that, there is an option for choosing the best combination of explanatory
variables in the model. If negatively correlated variables were retained, the model could
produce negative values if other variables (those having a higher impact on the model) are

silent or have “0” values (e.g. Open space).

Before choosing the best combination of explanatory variables, another innovation has been
used in model M1. Two dummy variables have been selected for the model, namely seasons
and days of the week. The following table (13) provides grounds for choosing the first
dummy variable. Although there is less variation of average wind speed across the seasons,
the other two variables show significant variation. Higher rainfall reduces the PMyg
concentration in the air, on the other hand, people operate solid fuel heating appliances,
which in turn may cause an increase in emitted PMjg on cold days. In addition, the traffic is
one of the primary sources of PM;g and the traffic volume varies according to the days of the
week, e.g. weekdays vs. weekends. This provides the logic for choosing the dummy variable
for days. Previous studies, (Chen, et al., 2010) for season (only) and (Maynard, A Coull,
Gryparis, & Schwartz, 2007) for days (only) used such division in their models. Here, dummy
variables have been used to make a better fit of the model with the data set. The model

thus, yields an adjusted R-squared 0.37, an improvement of 2% extra explanatory power.

Subsequently, another statistical technique has been deployed as PMy, data was not
normally distributed, whereas, regression assumes PMj, data should follow a normal
distribution. To create PM4q data as normally distributed, natural log transformation of PMqg
was considered in the model. Then log-level analysis has been performed, which yielded an
adjusted R? of 0.43.

Average Temperature (C) Average Rainfall (mm) Average Wind speed (m/s)

Seasons 2007 2008 2009 2007 2008 2009 2007 2008 2009

Summer* 13.97 14.25 14.56 3.99 3.93 2.80 4.97 5.34 5.12
Winter 9.00 8.01 8.13 1.53 2.26 2.35 5.89 6.17 5.88
Difference | 4.97 6.25 6.43 2.47 1.66 A4 -91 -.83 -.76

*June,July and August (according to met.ie, http://en.wikipedia.org/wiki/Summer)
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Table 13 Seasonal environmental data

Following the log-level model, the best logical combination of input variables (Fehler!

Verweisquelle konnte nicht gefunden werden.) has been chosen for model M2 as below:

(Intercept)

dew_point
wind_speed
Radiation
rRainfall
Stability_class
coast_km
windINdex
Altitude
Rdj350_km
Open_Area
Nearrdj_km
Testouml2
TestDuml3
TestDumld
TestDuml5
TestbDuml6
TestDuml?
Testoum22

Signif. codes:

-1.
0.
0.

-0.

-0.
0.

-0.

[}
QOO0

coooco0oOoNOO

Estimate Std. Error

1283249
1440752
0229599
1764334
0764062
0011457
0069847
. 3158587
.1824649
. 0829934
.0343872
.1172716
8736484
. 8245471
. 0808790
1080254
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. 2600979
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Table 14 Regression Model Output (M2)

The model could be rewritten in the following form for better understanding:

Ln(PM10)

= —1.1283 + .26Winter + .081Tuesday + .11Wednesday + .14Thursday +.123Friday

o
L
s
e s
o
or o
vl
oo
o o
o
oo
o
oo
oo
R
o

oo

L
oW

+ .M425aturday — 095unday + . 14Temperature + .022Humidity — . 17Dewpoint —.07Wind speed
+ .001Radiation —.006Rainfall + .315tability Class + .08Wind Index + .03Altitude — .87 0pen Spoce

+ 11Major road length (within 330m buffer) + 2.82Nearest major road distance)

The model’s coefficient for dummy variables shows conformity with the logic for using

dummy variables. Winter Mondays get 26% excess PM;q over the summer Mondays. On the

other hand, coefficients for weekends are comparatively lower than the weekdays,

especially on Sunday. For Saturday, the model shows slightly higher PM;, than Monday.

Among the other variables, the coastal distance variable shows a negative correlation, which

is completely logical in the context. A study (Yin et al., 2005) in Ireland shows that the

primary source contributing to PMyg is marine aerosol (NaCl). An observation from the past

data (2007-2009), monitoring sites (Marino, Ringsend and Dun Laoghaire) showed that there
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is no significant reduction of PMy being close to the ocean (Figure 17 Average daily PM10

concentration (2007-2009) in monitoring stations).

Figure 17 Average daily PM10 concentration (2007-2009) in monitoring stations

Several techniques (Figure 18 Time series data for PMg vs. PM;o without outliers Figure 19,

Figure 20) have been further used to improve the log-level model. These included:

Model 3: Limiting the PM,4 concentration data to within two standard deviations. The treatment of
PMyq in this way has been mentioned as PMy,_2SD. Here, standard Deviation; has been calculated for

each station and each year.
Model 4: 3-days moving average for PMy_2SD

Model 5: 3-day weighted Moving average (Weight:.5 for the day’ 0’, .3 for for day-1, and .2 for day-2
) for PMo_2SD.

Model 6: Exponential Moving average with .6 smoothing factor for PMy,_2SD

Model 7: Exponential Moving average with .3 smoothing factor for PMy,_2SD

The idea here was to capture any long term trends, avoiding short term fluctuations as the
resolution of the explanatory variables was either static over the area (weather data), and

no land use variable was similar to the resolution of daily PM, data.
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Figure 18 Time series data for PM,,vs. PM,, without outliers
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Figure 19 Time series data for PM,, without outliers, 3-day moving average and 3-day weighted moving

average
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Figure 20 Time series data for PM,, without outliers and exponential moving average

The models yielded the following R squared values (Table 15). This means the reduction of
short-term fluctuation of PMy, data matched better with the low resolution of explanatory

variables.
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©)
Models 3 4 5 6 7
Adjusted R squared 0.44 0.48 0.49 0.50 0.54

Table 15 Performance of the Models

2.4.2 Validation of LUR Model

tempering the data), Model-6 and Model-7.

Here models 6 and 7 meet or exceed these performance criteria.

Indicator Model-2 Model-6 Model-7
R-squared (Model) 0.43 0.50 0.54
R-squared (Validation) * 0.46 0.34 0.30
RMSE* 7.65 9.02 9.23
RMSE (Log)* 2.03 2.19 2.22
Pearson r* 0.67 0.58 0.54
R-sqr* 0.46 0.34 0.30

*validation with 15% data.

Table 16 Model validation

using a normality test (Figure 21).

The target values outlined in Section 2.2 highlighted a desirable R? adjusted figure of 50%.

To validate and to choose the best fitted model, cross validation has been performed.
Statistical tests like the coefficient of determination (R?) and Root Mean Squared Error
(RMSE) were measured (Table 16) to ensure the calibrated model’s efficiency. Using SPSS
software, 15% of the total observation was kept for validation and the rest of the 85% data

was used to reproduce best performed models: Model 2 (best fitted model before

The validation shows that reproduced Model-2 although having a comparatively lower fit,

yields a good R squared in the validation process. This model was then further examined
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res
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Figure 21 Normality Test (a. Residual vs. fitted value; b. Normal Q-Q plot)

Figure 21 (a) showed an unbiased and homoscedastic relationship between residual and
fitted values, while Figure 21 (b) shows the residuals were normally distributed and

scattered around the line.

2.4.3 Model Optimisation
The log-level model was further optimised using a neural network (NN) approach in Matlab.
As the data was highly nonlinear in nature, a neural network-NN (Figure 22) has been

applied in this case.

A Mathematically, the neuron j can be described as follows
- x n=im
>( . uq:Zﬂ_inEJ'xP: g = @(ug +by)

Where X;,X,,...... Xp are the input signals, wyy is the connection weight from p in layer | to
neuron g in layer 1+1, uq is the linear combiner output due to the input signals, by is the

input  hidden  output  bias, @ (....) is the activation faction and a, is the output signal of the neuron .
layer layer layer

Figure 22 Typical Neural Network Structure (Dunne & Ghosh, 2011; Haykin, 1994)

Here, the Levenberg-Marquardt backpropagation technique has been applied. After several
iterations, the network architecture (Figure 23a) that performed best was selected. The 22-

40-1-1- combination yielded following result (Figure 23b).
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a Training: 4428 1.08032e-1
ii Validation: 553 1.47346e-1
W Testing: 553 1.55281e-1

Figure 23 Neural network (a. Architecture, b. Model performance)

R
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7.07795¢-1
683927 e-1

The mean square error was found at validation was 0.14. (RMSE 0.374) in log scale. In

normal scale the error was 1.45, a significant improvement from the previous 7.65 RMSE

mentioned in Table 16. Figure 24 demonstrates the improved performance obtained using

the NN methodology.

Output ~= 0.55"Target + 1.1

Qutput ~= 0.65"Target + 0.88
N

Training: R=0.80506

C  Data

Target

Test: R=0.68393

C  Data
Fit o

Validation: R=0.7078

Output ~= 0.59"Target + 1

O Data

Target

All: R=0.78441

Output ~= 0.63"Target + 0.92

Target

Figure 24 Performance of the Neural Network
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2.5 Exposure concentration for Dublin roads

2.5.1 Introdu

ction

To generate exposure concentration at route level, exposure mapping is necessary. This can

be obtained using the kriging geo-statistical interpolation technique. However, as the

number of the monitoring stations was low, it was necessary to extrapolate data for some

unmonitored sites (sample points) using the regression equation. For this reason grouping

analysis was performed to understand the physical setting of the study area. This will

provide an indication of the sample number and location for each group.

2.5.2 Exposure mapping

2.5.2.1 Grouping analysis

Based on the physical characteristics (Population density, Housing Stock density, Major road

density, Land cover and Altitude) of the area, the following eight classified areas (Figure 25)

have been determined for Dublin city.

s

m))
m2
m3
-
ms
-6
-7
-

3 G\Users\SaniuhDocuments\ArcGIS\S
®

[ <all other values>

SS_GROUP

Figure 25 Eight optimal groups for Dublin

Figure 26 (Pseudo F- statistics) shows that the eight groups are the optimum number for this

area according to the given criteria.
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Pseudo F-Statistic
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Figure 26 Optimal Group Test
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2.5.2.2 PMy, estimations for new sample sites

Symbology
Maximum
® Mean
¢ Median

Minimum

Max(Mean)

Landuse variables like distance from the coast, altitude, major road within 350m, wind index,

nearest major road, open space for the relevant buffer sizes were derived from the GIS data.

In addition, average weather conditions were calculated based on weather data from 2007

to 2009.

) _5 @

2 . 2 i P . 5

2 |2 |2 |fz|8dlEe g £
§ | oo Sc |z |8c|sE |52 |8z |8E
Monday 14.42 82.30 11.22 4.90 194.98 63.47 2.44 4.02
Tuesday 14.72 80.95 11.22 5.29 209.81 73.30 3.20 3.98
Wednesday 14.42 83.19 11.42 5.23 208.58 69.93 3.82 4.00
Thursday 13.86 83.85 11.00 5.18 195.17 66.38 3.01 4.00
Friday 14.04 82.70 10.93 5.19 199.40 66.19 3.42 4.00

g Saturday 14.27 83.65 11.34 5.27 213.83 59.61 6.56 4.03
ug, Sunday 13.98 82.36 10.82 4.99 197.02 60.79 3.10 4.02
Monday 8.09 84.13 5.40 6.08 193.59 32.47 1.58 4.06
Tuesday 8.18 84.46 5.55 5.83 196.65 32.59 2.02 4.07
Wednesday 8.22 84.71 5.64 5.89 203.19 30.75 2.25 4.06
Thursday 8.78 83.87 6.05 6.31 206.53 33.03 2.15 4.05
Friday 8.50 84.25 5.86 5.81 210.37 30.92 1.94 4.16

§ Saturday 8.74 83.46 5.90 6.01 205.26 33.18 2.02 4.09
é Sunday 8.27 84.11 5.59 5.91 193.76 31.06 2.28 4.06

Table 17 Average weather condition
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Both landuse and environmental data were input to the optimised model in mathlab and

PM o data for 32 sites were derived for seven days for each season (example, Figure 27).

o

Rathmines
Ringsend
Coleraine..

SMonday
STuesday
SWednesday

= SThursday

= SFriday

Figure 27 Predicted PM10 over the week in summer

2.5.2.3 Spatial Auto-correlation

Moran's | test was conducted which is a measure of global spatial autocorrelation. Negative

values indicate negative spatial autocorrelation. Values range from -1 (indicating perfect

dispersion) to +1 (perfect correlation). A zero value indicates a random spatial pattern. Most

of the cases Moran’s | is near to 0 which indicates the patterns do not appear to be

significantly different from random. There is no alarming outcome except for a summer

Wednesday. In this case, given the z-score of 2.43, there is less than 5% likelihood that this

clustered pattern could be the result of random chance.

Summer Winter
> >
g > > g > >
) ) 4 e & > ) £ ) 8 8 >
el ° c a > fd © el e} c A > o ©
c 7y o pey (© S © c v o — ] S o
s| &| | 2| 2| £| 5| & £ 2| 2| 2| E| &
D = = = = e 3 A = = = = e A A
ays
v
=
o _
3
0.196 0.096 | 0.316 | 0.071 | 0.187 | 0.084 | 0.141 0.029 | 0.049 | 0.136 | 0.015 | 0.025 | -0.003 | -0.051
*
o
N5
a
1.709 1.172 | 2.428 1.091 1.595 1.121 1.236 0.693 | 0.643 | 1.329 | 0.870 | 0.752 | 0.214 -0.136
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'
o

value

0.087 | 0.241 | 0.015 | 0.275 | 0.111 | 0.262 | 0.217 | 0.488 | 0.520 | 0.184 | 0.384 | 0.452 | 0.831

0.892

*Z-scores in which values greater than 1.96 or smaller than -1.96 indicate spatial autocorrelation that is

significant at the 5% level.

Table 18 Moran’s | test

2.5.2.4 Kriging

Kriging was used to develop the exposure concentration map over the city area (Example:

Figure 28). The Kriging technique was used to interpolate the value of a random field at an

unobserved location from observations of its value at nearby locations.

PM 10 MAP: DUBLIN (SUMMER-MONDAY)

Legend

PM10
Value

- High : 21.1981

B Low - 4.03703

1Miles
6

S
0 075 15 3 45

Semivariogram/Covariance Cloud

Normal QQPlot
Transformation: None

i

% -
|

]

R i

:‘,‘ %gi;
EE Lot S o

Dataset : Pollutants_in_All_sites Attribute: SMonday == R T Damset: Poluants_in_AlL s ARmute SWonaw
Dataset: Pollutants_in_All_sites Attribute: SMonday

Figure 28 PM,, Exposure Map for Dublin area (Summer-Monday)

The exposure map was then overlapped with the road network. In order to obtain the daily

exposure concentration on every road. To achieve this, the road layers were first converted

to point layers using XTools Pro 9.1 which generated 59262 points on the center line of the
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roads (Figure 29). PMo concentration for each point has been extracted from the exposure
map (Figure 30). Having co-ordinates for each point this output can be used for the route

choice purposes, or route level information can also be used for route choice (Figure 32).

Figure 30 Exposure map with road network (Points)
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2.6 Exposure model for Vienna
Vienna is Austria's capital city, with a population of about approximately 1.731 million. The
area covered by the Vienna boundary is 414.6 km? which is approximately four times higher

than the area of Dublin.

The methodology of the exposure modelling remains the same for Vienna. The
dissemination of air quality information is excellent in Vienna. Air Quality monitors in Vienna

(Figure 31) provide real time PMyo concentration.
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Figure 31 Air Quality monitoring sites in Vienna

Source: Umweltbundesamt

The source for values of the response variable (PMyg) is Umweltbundesamt . The latitude
and longitude for the PMyy monitoring stations have been taken from the
Umweltbundesamt website and inputted in the GIS environment. The administrative
boundary has been taken from the GADM database of Global Administrative Areas (GADM,

2012). Figure 31 shows a few of the monitors are just outside the Vienna city boundary.

Page 46 / 59



27/01/2013

These monitoring sites have also been considered to capture more spatial information about

Vienna’ exposure concentration dynamics.

Floridsdorf G erichtsgasse

Schafbergbad

Stadlau, Hausgrundweg

Wahringergurtel, AKH 05 erape

Kendlerstralie

EEmHETERE AZ3/Rinnbockstrate

Belgrade cour

gr Works

LaaerBe

. Theodor Sickel-lane Forest Service
Kaisere

UL L — T uies
00.751.5 3 45 8

Figure 32 Air Quality monitoring sites in Vienna within the city boundary

2011 2012
Minimum Maximum | Average Minimum Maximum Average
. 3 3 3 3 3 3

Station pHg/m Hg/m Hg/m pg/m Hg/m pg/m
A23/RinnbéckstraBe | 7.0 148.1 34.44 5.7 98.9 25.98
AKH, Stdringweg 4.2 123.7 26.72 4.0 89.6 23.16
Belgradplatz 4.2 145.2 33.87 4.7 99.9 27.33
Floridsdorf
Gerichtsgasse 7.9 135.4 31.25 8.0 154.5 27.45
Gaudenzdorf 7.1 136.2 30.51 6.3 106.7 25.57
Kaiser Ebersdorf 3.6 131.1 29.36 3.3 96.3 22.66
Kendlerstrale 6.7 128.3 30.35 4.6 115.4 26.47
Laaerberg 5.9 130.6 27.99 4.2 95.4 23.66
Liesing 4.7 131.7 31.62 43 112.1 27.30
Lobau 5.3 125.0 25.99 5.3 87.6 20.28
Schafbergbad 5.2 106.0 24.54 5.7 147.6 21.34
Stadlau 4.2 122.9 28.28 5.0 132.7 24.88
TaborstraBe 5.1 126.4 29.35 5.0 90.9 24.20

Source: Municipal government of Vienna

Table 19 PMy, in different monitoring stations (2011-2012) in Vienna
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2.6.1 Deviations from the lead model

There is no significant deviation in the modelling process from the one used for Dublin city.

The selection of data was performed based on the availability. Explanatory variables used in

the Vienna model were similar to Dublin (Table 20). However, the resolution of the dataset

was not always the same as the lead model.

Slno | Variable SIno | Variable
Latitude+ Longitude Average Population density within 500m
1 10 | (persons/km?2)
2 | Open area in Sg.km(1000m) 11 | Average Altitude in m (1000m)
All type of Road length in km(350m) Average Population density within 1000m
3 12 | (persons/km2)
4 | All type of Road length in km(750m) 13 | Minimum Daily Temperature(C)
5 | Major Road length in km(350m) 14 | Maximum Daily Temperature(C)
6 | Major Road length in km(750m) 15 | Wind speed (m/s)
7 | Average Altitude in m (500m) 16 | Precipitation (mm)
8 | Nearest Major Road Distance (km) 17 | Average Daily Temperature (C)
9 | No. of Building Centroid within 2000m 18 | Industrial area in Sq.km(1000m)

Table 20 Explanatory variables for Vienna Model

2.6.2 Model Selection and optimisation

Models for Vienna (Table 21) have been developed followed by the same methodology

described in section 4.1.

Air PM10 Model for Dublin and Vienna (variables
Location | pollutant <=.001 Significance) R2 F P SE DF
LnY=27.249077+0.021683X;-0.053404X,-
Primary 0.045463X3-0.020775X,-0.361544X;- < 2.2e- | 0.504
Model 0.110482X+0.029500X,-0.031520X, 0.34 605.2 16 5 9325
LnY=27.084983+0.021706X;-0.047978X,-
With 0.045630X3-0.019589X,-0.361544Xs-
Seasonal | 0.110482X:+0.029500X5- < 2.2e- | 0.501
Impact 0.031520X,,+0.153344Winter 0.35 553.8 16 9 9324
Final LnY=27.055656+0.020783X,-0.047124X,-
Model: 0.046071X5-0.019863X,-0.361544X;-
With 0.110482X+0.029500Xs-
Seasonal | 0.031520X;,+0.147878Winter+0.095848Tuesday
and Daily | +0.129733Wednesday+0.159774Thursday+0.050 < 2.2e- | 0.495
Vienna Impact: 301Friday-0.013376Saturday-0.083362Sunday 0.36 356.9 16 7 9318
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The model with high R-squared value was chosen. That equation can be rewritten as below:

LnY=27.055656+0.020783MindailyTemp-0.047124Max.dailyTemp-0.046071WindSpeed-
0.019863DailyPrecipitation-0.361544(Latitude+Longitude)-
0.1104820penAreaSq.km(1000m)+0.029500MajorRoadlengthinkm(350m)-

Model  with | 0.031520NearestMajorRoadDistance(km)

variable +0.147878Winter+0.095848Tuesday+0.129733Wednesday+0.159774Thursday+0.050301Frida
names y-0.013376Saturday-0.083362Sunday

Table 21 Panel Data Models for Vienna

Weather parameters that exist in the final model are highly non-linear in nature and have
complex interactions among explanatory variables. So, non-parametric regression and neural
network fits here. Using of panel data provides an additional benefit of using non-parametric
regression, as such the methodology requires a large number of observations to define the

structure of the model first and then make estimatations.

Non-parametric regression in the form of locally weighted scatterplot smoothing (LOWESS)
has been deployed through XLSTAT 2013. The LOWESS method combines multiple
regression models in a k-nearest-neighbour-based meta-model. To define the structure of
the model, smoothing parameter value (k nearest neighbours: % = 50) and the degree of the
local polynomial as 1 is defined). Tricube weight function has been used as kernel function.
On the other hand, the log-level models were also optimised using a neural network (NN)
approach in Matlab. Here, the Levenberg-Marquardt backpropagation technique has been
applied. After several iterations with different number of hidden neurons (10, 25, 30, 40, 50,
60), the network architecture that performed best was selected. The combination for “input-
hidden layers- output” was 17-50-1-1 for Vienna yielded consistent satisfactory results. 85%
data were devoted to training, 10% for validation and 5% for testing the model, and run the
models for consecutive five times. The MATLAB Neural Network Toolbox has been applied to
perform this analysis. From the below table, Non-parametric regression was found to

consistently yield better results.
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©)
Model description Vienna Model description Vienna
Non- Non-
Multiple | paramet Multiple | paramet
Linear ric Linear ric
Regressi | Regressi | Neural Regressi | Regressi | Neural
Stage and on on Netwo Stage and on on Netwo
Performance Model Model rk Performance Model Model rk
R2 0.36 0.51
MS
Full Model E -- 0.19 ---
r' 0.9 r' 0.9
R2 0.38 0.51 R2 0.37 0.5
Calibrati | MS Calibrati | MS
on E 0.19 0.07 on E 0.19 0.07
88 .85
r' | 0.59 0.71 (.77)* r' 0.6 0.71 (.91)*
R2 0.35 0.51 R2 0.36 0.51
Ru | Validatio | MS .08 Ru | Validatio | MS 11
nl n E -—- 0.16 (.19)* n4 n E - 0.16 (07)*
r' 0.91 r' 0.92
R2 0.37 0.51 R2 0.37 0.51 -
Calibrati | MS Calibrati | MS
on E 0.19 0.06 on E 0.19 0.06
.87 0.85
r' 0.6 0.73 (.82)* r' 0.57 0.7 (.86)*
R2 0.36 0.53 R2 0.32 0.49
Ru | Validatio | MS .10 Ru | Validatio | MS 0.1
n2 n E -—- 0.16 (.14)* n5 n E - 0.17 (.1)*
r' 0.87
R2 0.37 0.5
Calibrati | MS
on E 0.19 0.09
.76
r' 0.6 0.71 (.84)*
R2 0.36 0.51
Ru | Validatio | MS .17
n3 n E --- 0.15 (.12)*

* 5% testing data result.

Table 22 Model validation and performance analysis

2.6.3 Estimation of exposure concentration for new points and Interpolation
Similar to Dublin Model, 14 maps (seven days over the summer and winter) were produced
for average PMy, concentration in Vienna. For this 25 extra points were selected randomly

and the prediction was carried out for a total of 38 (25+13 fixed monitoring stations) points
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in Vienna. Thus, kriging techniques were applied for seven days in summer and winter

(example, Figure 33).

I 1127933025 - 11 BesB01SY [ 18.50761604 - 1895978589
I 11 84588158 - 124103088 [ 18.9597853 - 19.41195573
s HAN 2979842 119411955 - 1986412557
K tH] 350553551 11986412958 - 2031629541
U [ 1354553952 - 1411208683 [ 031629542 - 076846525
g [0 1420208684 - 146786380 1 2006346526 - 21. 206351
I JLETE63815 - 1526518045 1 21 22063511 - 21 67280494
152051898 - 158100077

[0 21 67280495 - 2212497478

1581176078 - 1630029208 21490409 - RSTNUE

Figure 33 Summer Friday and Winter Monday

The exposure concentration was subsequently extracted to the points on the road links to

maps.

2.7 Factor selection & Exposure Rating

As discussed earlier in the section 2.2, the dose for a trip will be identified through equation

(2). For this, time factor and mode factors are needed to be identified.

The time factor enhances the estimated average PM;q values, and mode factor provides
scope to estimate dose for the travellers using different modes. The time factor has been
calculated using hourly nitrogen oxide (NO,) values of five monitoring stations in Dublin, as
there is a limitation of availability for hourly PMy data. The daily concentration of NO, and
PMyo has a r=.6 Pearson correlation, and that is comparatively better than with other
pollutants (PMqg vs. NO was r=.51; PMjo vs. NO, was r=.58). The average hourly NO, values
for each monitoring station was calculated for 2009, and the two peaks were observed in the
Figure 34 for all the monitoring stations (the hourly distribution over the day also showed
the same tendency as average hourly values). These peaks are consistent with the peak
traffic periods mentioned in the emission report (deliverable D3.1), that is, fluctuation of
emission concentrations is consistent with traffic level. Then six time factors were estimated
from the ratio of average concentration values in different periods, and daily average
concentration for each monitor. Time factors (Table 23) for six time periods were calculated

taking the average of the ratios in six different periods of all monitors.
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Figure 34 Average NOx concentration in the monitoring stations
Serial No. Factor Name Time Period Time Factor

1 Kick off factor 5am -6.59am 0.74
2 Morning Peak Factor 7am-10.59am 1.35
3 Settling Factor: Noon 11am-13.59pm 0.96
4 Average Traffic Factor 14pm-15.59pm 0.96
5 Evening Peak 16pm-18.59pm 1.16
6 Settling Factor: Night 19pm-21.59pm 0.95
7 Night factor 22pm-4.59am 0.66

Note: Seven Time Factors (e.g. Peak and off-peak hour) have been derived based on the traffic situation in

Dublin and assumed to be same in general for Vienna; Inhalitation rate has been taken from the literature (US

EPA).

Table 23 List of Time Factors

The mode factor, that is the inhalation factor (Table 24) for each mode has been taken from
US EPA 2009 (Exposure Factors Handbook: 2009 Update. EPA/60 0/R-09/052A.)

Serial No Mode Inhalation factor
1 Luas (Tram), Dart(Metro), Bus* 0.228 m*/hr
2 Bike 1.620 m’/hr
3 Car/Taxi 0.570 m’/hr
4 Walk 0.720 m*/hr

* Same as because the body movement is similar to the resting period while using these modes of travel.

Table 24 List of Inhalation factor
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All these factors were considered along with the average PM, values to calculate dose for
each type of mode users. The total value calculated from different modes provide the
possible dose for each route. Although the outcome of the modelling will provide dose, the

value will be expressed for the users as a band score as outlined earlier.

2.8 Algorithm for PEACOX application

The algorithm developed for PEACOX was on the Java platform. This final algorithm has been
focused on the link exposure calculation in figure 1 in realtime. The input and output were

the main concern in this stage. The flowchart in figure 35 illustrates the final algorithm.

|
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! . .
v  information !
7
_______________ 7 ,E:::::::::::::_"__., l_____________r______—__J
1 . L’/ I . I /' 4 4 |
1 O-D Co-ordinates L___,' PM10 concentration ,~ /. i
1 h 1 1 , 1 1
R - "._ | database A e LR LT
: R e LT S ! ' Rating of routes
B W TTITmm e '/ A N |
jmmm = e — - : | Time factor database ¢ b
| Recommendation | o : |
! . 1 s T T s 1 S 1
I service | | i .
| L_——__ Mode - _» Inhalation factor |
|

e e e e e e —

Figure 35 Exposure algorithm flowchart

2.9 Conclusion

The methodologies for trip-by-trip exposure have been developed for the given task of
PEACOX project. PMyo has been chosen as generic pollutant for exposure modelling. The
given task was first carried out for whole city areas by land use regression modelling and
thus, the output was used to determine route level exposure. There was a challenge in

developing an LUR model with limited spatial coverage of the monitors which was
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confronted by using advanced modelling techniques. This limitation that was particularly
prominent in Dublin was balanced by using data from the additional sites in longer periods.
On the other hand, seasonal and daily variation has been added to increase model’s
performance for both of the cities. The final MLR models in this study yield acceptable
explanatory power for either city. The techniques for using exposure information for
realtime route level have also been outlined clearly. The final version of the models for
PEACOX project has been developed, and delivered in the Java platform with necessary

adjustment for instantaneous application.
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3. Glossary of Terms

Air Pollutant: Anything emitted to the air which could have a detrimental
effect on human health or the environment.

Ambient Air: The air located outside of buildings/ Outdoor air.
Exposure: The amount of contact that a person has with the pollutant.
Land use: The total of arrangements, activities and inputs undertaken in a

certain land cover type.

Neural networks/NN: It is often called as statistical black box; is composed of
interconnecting artificial neurons that build mathematical
models mimicking the properties of biological neurons.

Particulate Matter;o/PMiq: Particulate matter is made up of many different compounds that
has size of 10um.

Routine Monitoring Network: A collection of air monitoring equipment spread across an area
whose readings are used to understand the Air Quality in that

area.
Solar radiation: Radiation emitted by the Sun.
Regression: In statistics, regression analysis is a technique for estimating

the relationships among response and explanatory variables.
Small Area: The smallest area grouping used in the Irish census.

ug/m3: 1 ug/m3 means that for every cubic meter of air there is 1
micro-gram of the pollutant present.
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