
Date: 27/01/2013 

Dissemination level: (PU, PP, RE, CO): PU 

Project Co-Funded by the European Commission within the 7th Framework Program 

PEACOX – Persuasive Advisor for CO2-reducing cross-modal trip planning 

Project Reference: 288466 

FP7-ICT 2011: 6.6 Low carbon multi-modal mobility and freight transport 

Project Duration: 1 Oct 2011 – 30 Sept 2014 

 

 

 

 

 

 

D3.2 Eco Driving Model and Emissions 

Exposure Model 

[Trinity College Dublin] 

 

Author(s) 

Md. Saniul Alam (TCD) 

Dr. Aonghus McNabola (TCD) 

Dr. Brian Caulfield (TCD)



27/01/2013 

 

 

Page 2 / 59 

 

Abstract 

This project involves the examination of real-time eco-driving data that enables users to 

make pre-trip and on-route decisions when driving as to the optimal route to take. The basis 

of this project is to estimate how efficiently drivers are performing in relation to fuel 

consumption per kilometer.  The analysis uses details on the vehicle specification, in terms 

of fuel efficiency, and relates this to the distance travelled to provide the user with 

information on the efficiency per KM travelled.  Eco-driving involves the training of 

individuals to change their driving patterns and to adapt to driving conditions.  This project 

examines data collected by TomTom in the Netherlands and measures the emissions saved 

by providing eco-driving information. 

 

The PEACOX project has set grounds for managing eco-friendly driving issues more efficiently 

along with their other set targets. One of the aims is to provide information to travellers 

about safer routes in terms of exposure. Studies showed that a reduction in exposure to 

particulate matter (PM10) could reduce premature deaths significantly and, could also offer 

a healthy environment for travelling. Thus, PM10 has been chosen as a generic pollutant 

whose concentration level indicates the level of exposure in the routes. In order to estimate 

exposure concentrations, exposure models were built.  

To carry out the task, PM10 concentration has been estimated for Dublin and Vienna using a 

Landuse regression model approach. Routine monitoring PM10 data has been used for 

building models where explanatory variables included weather, land use, topographic and 

demographic information. After model validation, a neural network was also used to obtain 

the best fit model, optimising the relationship between response and explanatory variables. 

This was necessary to offset the limitation of using the small number of PM10 monitors 

available. Fourteen emissions maps for different days of the week over the summer and 

winter seasons were predicted for each city. PM10 concentrations were then transferred to 

the road network level to highlight the best route in terms of exposure level, or dose for 

trips. 
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1. Eco-driving model 

 Introduction  1.1

This first section of the deliverable relates to the results of the eco-plus (eco-driving) trial 

conducted between Trinity College Dublin and TomTom.  

 

In recent years many authors have written about the success of eco-driving and its ability to 

reduce emissions and how it can be used as a tool to combat climate change. Barkenbus 

(2010) suggests that eco-driving is the overlooked climate change initiative and that 

following a policy of eco-driving can result in a 10% reduction in fuel consumption which will 

have a knock on effect of reducing emissions.  A range of studies have shown that the 

benefits from eco-driving can range from a 5 to 20% reduction in emissions (Stillwater et al, 

2012).  

Beusen et al (2009) examined 10 cars over a 10-month period after taking a course, which 

provided them with eco-driving training.  The authors found that drivers on average had a 

5.8% reduction in fuel usage. However, the study showed that the fuel savings reduced over 

time and drivers went back to their original habits.  Delhomme et al (2013) conducted a 

survey of French drivers to ascertain their opinions in relation to eco-driving and how they 

feel about adopting eco-driving styles.  The findings show that generally respondents said it 

would be easy to adapt to the eco-driving styles.  The results did show that younger and 

middle aged drivers said it may be difficult to adapt to the driving styles.  

Boriboonsomsin et al (2011) conducted a study of 20 drivers in Southern California using an 

on-board eco-driving feedback tool.  The findings of the study showed modest increases in 

fuel economy of 6% for urban streets and 1% on motorways.  This was attributed increased 

congestion in the area.  Martin et al (2013) conducted a study of 18 drivers in California 

using on-board feedback for eco-driving.  The study took a similar approach to the one 

reported in this deliverable in that the devices were turned off for the first month and then 

switched on to give drivers feedback on driving style.  Similar to the results found in 

Boriboonsomsin et al (2011), the authors show that modest improvements in fuel efficiency.  

In 2012, Martin et al (2012) conducted a longitudinal study of a sample of participants in 

California.  This study surveyed participants over three time intervals to determine if eco-
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driving behavior would last in the long run using information from an eco-driving website.  

The study looked at before and after information on how the study worked.  The results 

showed that more than half of the sample improved their eco-driving behavior and that 

females, those living in smaller households and those with newer cars were more likely to 

improve eco-driving behavior.  

Stillwater and Kurani (2012) employed the theory of planned behavior to examine how 

driving behaviors change using an on-board eco-driving feedback tool.  The findings showed 

that that setting goals for participants and real-time feedback resulted in drivers increasing 

their fuel efficiency. Rutty et al (2013) examined the impacts of eco-driving on Calgary’s 

municipal fleet. In the study fifteen drivers in a study to reduce the emissions associated 

with vehicle idling.  The results of the study showed that average vehicle idling was reduced 

by between 4% and 10% per day.  Other road users have been examined to ascertain if eco-

driving can be applied to public transport drivers.  Sromberg and Karlsson (2013) examined 

bus drivers in Sweden using in vehicle feedback tools to reduce harsh acceleration.  The 

findings of the study showed that a 6.8% reduction in fuel usage occurred in the study 

period.  

The research presented in this section shows the benefits of eco-driving, while the results 

are modest; it shows how eco-driving strategies can be successful.  While as mentioned 

these results were modest they these policies can be used in a suite of policies to reduce 

emissions. 

 Methodology  1.2

1.2.1 Data Collection  

The eco-driving trial started in January 2012 and the results presented in this report track 

the vehicles up to October 2012.  Five different groups were analyzed during the trial period.  

 

Group A:  This group had 82 users and these users were provided with on-board active 

driver feedback for the duration of the trial and access to webfleet online.  

Group B:  This group had 27 users and these users were provided with on-board active driver 

feedback for the duration of the trial and from the 1st of July 2012 were given access to 

webfleet online.  
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Group C: This group had 27 users and for the first two months had no interventions.  Then 

this group was given both on-board active driver feedback and webfleet online.  

Group D: This group had 16 users and was not given any on-board information.  This group 

was given webfleet online from March 2012.  

Group E:  This group had 15 users and they received no information at all on driving style. 

This group was used a reference group to compare the other groups.  

 

Table 1 presents a description of the trip characteristics of those participants in each of the 

groups in the trial.  Table 1 presents the average of the sample and the standard deviation of 

the characteristic.  The standard deviation provides an indication of the range in the values 

recorded.   The results show that characteristics such as average daily travel distance and the 

number of trips are similar, this indicates that the comparisons preformed later in the report 

are based upon drivers with similar characteristics.  

 

 Group A Group B Group C Group D Group E 

 Mean  S.D. Mean  S.D. Mean  S.D. Mean  S.D. Mean  S.D. 

Number of 

trips  

3.4 2.0 3.2 2.0 3.6 2.0 3.4 1.9 3.4 1.8 

Distance 

(in KM) 

56.8 64.6 61.2 72.8 57.3 66.5 69.0 79.7 49.0 63.1 

Driving 

time (in 

mins) 

59  50 62 56 59 51 69 60 55 47 

Fuel usage 

(in liters)  

3 3.4 3.5 4.2 3.2 3.7 3.7 4.5 2.8 3.4 

Idle time 

(in mins) 

9 8 12 11 13 16 13 15 22 18 

Average 

time spent 

speeding 

(in mins) 

3 4 4 7 5 6 5 6 3 6 

Table 1 Description of data collected 
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 Eco-driving model  1.3

This section of the deliverable presents the model schematic used to analyze the results of 

the eco-plus trial.   Figure 1 shows the model schematic.  The model shows that the eco-

driving interventions of on-line driver feedback and on-board driver feedback are used to 

improve driving style. The success of these interventions is then measured by monitoring the 

reductions in idling time, fuel consumption and speeding.  These then all have an over all 

impact on the reductions in emissions.  This model is tested in the next section and the 

results are presented.  

 

Figure 1 Eco-driving Model 

 

 Analysis and Results  1.4

1.4.1 Reductions in CO2 

The following section reports the reductions in CO2 emissions from each of the five groups 

examined in the trial. In order to examine what if any reductions in CO2 occurred the 

emissions from the first two weeks of driving were averaged and used a baseline to compare 
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subsequent weeks for reductions in emissions.  Figures 2 – 6 present the findings for the 

average reductions in CO2 emissions per KM for each of the 37 weeks of the trial.    The 

results for each of the groups show that there was a decrease in CO2 emissions per KM 

driven.  The results from each of the groups are also presented in Tables 2-4 and more 

discussion of the results is presented in section 4.2.  

  

 

Figure 2 Reduction in CO2 - Group A 
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Figure 3 Reduction in CO2 - Group B 

 

 

Figure 4 Reductions in CO2 - Group C 
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Figure 5 Reductions in CO2 - Group D 

 

 

Figure 6 Reductions in CO2 - Group E 
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Tables 2 – 4 present similar data to that shown in Figures 1-5.  The results show the values 

for emissions per KM in average emissions and the standard deviation (S.D.).  The results 

presented in the table show the first two-week average and then the data is broken down 

into 5-week periods to show the changes in emissions over time.  The results show that for 

Group A that there is a drop in emissions from week 13 to week 27 and then there is a 

rebound and the average emissions increases.  The results for Group B show that there is a 

steady drop in the average emissions in the first 12 weeks of the trial.  From week 13 to 22 

the results show a greater decline in the average CO2 emissions per KM compared to the 

other time periods.  This time period was when those in Group B were provided with 

information via webfleet.  The results for Group C also show a steady decline in the average 

CO2 emissions.  This group was provided with on-board information and webfleet from week 

8.  The results show that from week 8 there was a decrease in average emissions.  The 

findings for Group D show that from week 12, when the participants got access to webfleet, 

that a decrease in average emissions was experience by those in this group.   Group E was 

used as the reference group in this study, as they were given no extra information on driving 

performance.  As one would expect there was little change in the over all average CO2 

emissions per KM in this group.  

 

Weeks Group A Group B  Group C Group D Group E 

 Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

1 & 2 133 6.2 138 2.1 144 0.6 144 3.1 142 7.2 

3-7 135 6.7 135 2.9 137 3.0 137 2.7 138 3.5 

8-12 136 10.4 133 3.5 135 2.3 134 2.4 132 2.4 

13-17 130 1.2 130 2.9 133 3.7 131 3.1 139 5.5 

18-22 131 3.5 130 2.7 134 3.7 128 2.9 138 3.9 

23-27 130 3.5 133 2.1 135 3.5 128 2.8 142 6.7 

28-32 136 3.7 134 4.6 135 1.2 125 2.5 138 6.2 

33-37 136 1.7 133 3.4 132 2.8 128 2.6 141 4.1 

Table 2 Overall reductions in CO2 emissions per KM 

 

In order to ascertain if drivers had different behavior on weekends compared to weekdays 

the dataset was divided between weekdays and weekends to determine if there was any 
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difference.  Table 3 presents the results for the weekends and Table 4 presents the results 

for weekdays.  The findings for Group A shows that on average participants had higher 

average emissions on weekends.   The results from Group B also show a similar trend with 

higher average emissions on weekends compared to weekdays.   These trends are also 

shown for Groups C, D and E.  

 

Weeks Group A Group B  Group C Group D Group E 

 Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

1 & 2 134 5.4 142 6.8 135 24.3 162 17.3 136 1.0 

3-7 138 4.2 143 7.3 147 9.2 142 14.3 147 4.9 

8-12 137 4.3 139 5.3 129 11.7 137 4.4 135 2.5 

13-17 135 2.1 133 5.0 139 4.4 130 4.5 138 8.7 

18-22 137 3.7 129 2.0 139 1.5 129 7.3 144 6.1 

23-27 137 4.9 129 6.4 139 5.9 128 1.8 150 23.1 

28-32 138 2.9 138 6.4 133 6.6 126 7.6 138 7.7 

33-37 136 6 140 5.7 131 4.9 130 1.8 146 8.3 

Table 3 Reductions in CO2 emissions - Weekends 

 

Weeks Group A Group B  Group C Group D Group E 

 Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

1 & 2 119 10.0 134 12.1 134 14.6 133 7.4 143 7.6 

3-7 133 17.1 135 3.9 137 6.2 138 1.8 136 3.8 

8-12 136 14.0 132 3.6 136 4.8 138 1.9 131 3.2 

13-17 125 7.8 129 2.1 132 2.9 132 3.1 138 6.1 

18-22 123 14.8 124 16.4 134 3.9 127 5.2 137 5.1 

23-27 120 17.1 120 23.8 134 3.9 128 4.6 138 5.1 

28-32 136 3.2 136 7.4 134 4.6 125 2.8 136 6.7 

33-37 135 2.3 139 5.8 132 2.7 127 1.2 139 4.3 

Table 4 Reductions in CO2 emissions - Weekdays 
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1.4.2 Comparison between results  

This section of the report presents a comparison between the results found for each of the 

groups to determine which interventions had the greatest impact upon CO2 emissions per 

KM.   Table 5 presents the findings of a comparison on the average weekly CO2 emissions 

per KM from groups A-D and compared against group E.  This set of results shows how each 

of the test groups preforms against the control group.  The results in Table 4, if positive show 

that the control group being compared had a reduction in CO2 emissions in the week in 

question compared to the control group.  Whereas a negative result would indicate that that 

the group being compared to the control group had higher average emissions per KM driven.  

The results in Table 4 show that on average each of the test groups had a greater reduction 

in CO2 emissions compared to the control sample.  The results show that Group D 

performed the best with an average reduction in emissions of 6% compared to the control 

group.  Groups A and B also had on average a 4% reduction in CO2 emissions compared to 

the control group with those in group C having a 3% decrease in emissions.  

 

 Group A Group B Group c Group D  

Week 1  7% 1% -5% -3% 

Week 2 8% 6% 2% 1% 

Week 3 8% 3% 1% 2% 

Week 4 3% 1% 0% 1% 

Week 5 -7% 3% 2% -1% 

Week 6 3% 1% 0% 1% 

Week 7 3% 2% 0% 0% 

Week 8 -3% -2% -5% -6% 

Week 9 -2% -5% -2% -2% 

Week 10 -12% 1% 2% 1% 

Week 11 3% 4% -3% -1% 

Week 12 0% 0% -2% 0% 

Week 13 4% 6% 3% 2% 

Week 14 7% 6% 8% 7% 

Week 15 1% 4% 0% -3% 

Week 16 12% 10% 6% 14% 

Week 17 10% 7% 6% 9% 

Week 18 12% 13% 3% 14% 

Week 19 7% 6% 1% 7% 

Week 20 4% 4% 3% 3% 

Week 21 4% 6% 7% 11% 

Week 22 -1% -1% -2% 4% 

Week 23 18% 18% 14% 22% 

Week 24 5% 4% -2% 11% 

Week 25 14% 7% 8% 10% 
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Week 26 6% 4% 5% 8% 

Week 27 2% 1% 0% 5% 

Week 28 -7% -3% -4% 6% 

Week 29 -3% 5% -2% 4% 

Week 30 3% -2% 1% 10% 

Week 31 7% 8% 10% 15% 

Week 32 7% 8% 5% 14% 

Week 33 6% 9% 13% 15% 

Week 34 1% 1% 2% 6% 

Week 35 5% 8% 6% 12% 

Week 36 1% 0% 5% 11% 

Week 37 7% 11% 6% 8% 

     

Average reduction 
in CO2 Emissions  

4% 4% 3% 6% 

Table 5 Groups compared to control group 

 

1.4.3 Minutes spent idling 

One of the main bad habits that drivers display when driving is idling.  This is when drivers 

for one reason or another have the car engine running but the car is not moving.  In this 

study participants that were idling for periods of longer than 5 minutes, this data was 

recorded.  Those in participants were that were provided with on-board information would 

have been provided with information on their idling.  Figures 7-11 show the weekly average 

amount of idling for each of the groups examined in the study.  The results show that those 

in groups A, B and C had lower rates of idling with a weekly average idling time of 8, 8 and 10 

minutes respectively.  Those in groups D and E were shown to have larger idling times of 12 

and 23 minutes per week respectively.  The results of this analysis shows that those in 

groups receiving on-board information and substantially less idling times that those not 

receiving this information.  
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Figure 7 Average mins spent idling – Group A 

 

 

Figure 8 Average mins spent idling - Group B 
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Figure 9 Average mins spent idling - Group C 

 

 

Figure 10 Average mins spent idling - Group D 
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Figure 11 Average mins spent idling - Group E 

 Discussion and Conclusions   1.5

The results presented in this section of the deliverable show the success of the eco-plus 

(eco-driving trial) conducted as part of the PEACOX project.   The findings of the trial 

conducted in the Netherlands concur with those presented in the international literature, in 

that while the savings in emissions and fuel consumption were modest, they do represent a 

significant reduction in emissions and a reduction in idling time. 
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2. Emissions Exposure Model  

 Introduction 2.1

2.1.1 Background of the deliverable  

Vehicle emission has an adverse impact on the environment at local and global scales. Many 

of these pollutants are carcinogenic like benzene, and many cause respiratory problems (e.g. 

PM2.5. NO2 and O3), cardiac admissions (e.g. PM) (Katsouyanni, et al., 2010) . Among them, 

nitrogen dioxide (NO2) and particulate matter (PMx) are causes of concern for Europe. 

Traffic has been considered as a primary source of NO2 and is also one of the main sources 

for PM (O’Dwyer, 2011). Investigations noted that if PM10 concentration was reduced to 20 

μg/m3 on all days, in Europe, it would lead to a decrease of 15 premature deaths per 

1,00,000 inhabitants per year (Katsouyanni, et al., 2010).  

The PEACOX project has set grounds for handling eco-friendly driving issues more efficiently 

along with other set targets. The aim of the third work package of the PEACOX project is to 

build models which will estimate emissions and exposure levels for travelers. A trip with an 

origin and a destination may have many possible routes. Thus, the user will be able to 

choose an option from a given set of options to peruse his/her journey for his/her 

destination in safer and healthier ways. 

2.1.2 Scope of the work package   

The exposure model, under the task WP3.4, has been identified as city specific and thus, 

requires building two different models for two cities (i.e. Dublin and Vienna). Considering 

the primary aim of work package 3, the objectives of the work pack include: 

 

Objective 1: Selection of appropriate approaches for exposure modelling in the current 

context. 

Objective 2: Apply the model’s outcome at route level. 

Objective 3: Replicate the model for another city (Vienna).   
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To carry out the objectives a lead model was developed based on Dublin city where different 

approaches were tested top obtain a best fit model with the available data. The Vienna 

model was then developed following the same methodology.  

 Selection of exposure modelling approach  2.2

2.2.1 Required features for exposure modelling at route level  

Air pollution exposure concentration at a particular place is very complex and involves many 

atmospheric chemical and local physical processes. Difficulties arise in developing models 

that predict exposure concentrations for all over a city in real-time where the study area is 

more than 100 square kilometres. Besides, the data availablity for building such a model is 

often in low resolution e.g. daily PM count. In addition, citywide models require a large 

number of monitoring stations that have been capturing data for a long period of time in the 

same resolution. For instance, most of the monitors in Dublin city capture PM10 data on a 

daily average basis. Thus, the highest resolution that model can capture is daily 

concentration, at least for the Dublin city model. Therefore, the temporal resolution is 

restricted to daily average. The level of exposure for a person to a particular pollutant, also 

depends on the exposure duration as well as on the travel time of a person. The exposure 

model is capable of providing real-time exposure ratings based on the breakdown of daily 

exposure concentration and real-time travel time information for different routes. 

2.2.2 Overview of the methodology  

According to the methodology developed (see Figure 12), two different steps are involved in 

the exposure models predictions. For the first level of analysis, it is necessary to estimate the 

exposure concentration for every road link. For defining exposure concentration, land use 

regression (LUR) can be used among the candidate models, which utilises the monitored 

levels of the pollutant of interest as the dependent variable, and variables such as traffic, 

topography, and other geographic variables are considered as independent variables in a 

multivariate regression model (Gilliland et al., 2005; Ryan & LeMasters, 2008). The LUR 

model is suitable for this research for following reasons: 1) The incorporation of site-specific 

variables into this method detects small area variations more effectively than other methods 

of interpolation (Briggs et al., 1997; Gilliland, et al., 2005); 2) the levels of pollution may then 

be predicted for any location using a regression model (Ryan & LeMasters, 2008). Besides, 
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the predictive performance of the LUR model is no less than that of alternatives such as 

dispersion modeling (Gulliver, et al., 2011; Hoek, et al., 2008). The landuse regression will be 

in the form of Equation (1). 

 

;      (1) 

 

Where,  = Exposure Concentration; = Traffic data;  = Land use data ;  = Weather 

data ;  = Error ; = regressing coefficient. 

 

 

Figure 12 Methodology of the Model 

 

The explanatory power for the LUR model was reported from R-squared .17 to .97 for 

various types of pollutants. However, R-squared for PM10 ranges from .45-.90 for both model 

calibration and validation (Hoek et al, 2008) in the reference studies. RMSE for PM10 by 

Briggs’s et al. (2007, 2011) showed values of 6.7 and 3.3 respectively.  With the limitation of 

the number of Air Quality monitors available in Dublin, it is not expected that high accuracy 

of the resulting of the models could be obtained. The spatial coverage of the monitors is 

much lower than the recommended minimums in the areas of interest, 7 for 117 sq.km in 

Dublin and 13 for 414.6 square km for Vienna.  

 

The LUR model was developed based on the limited number of monitoring stations and the 

model was used to predict exposure for selected different points of interest in the city. 
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Those selections were based on grouping analysis. This technique generated a good number 

of sites to extrapolate exposure concentration across the city area using the kriging 

technique. The generated exposure maps were then intersected with road centroid lines in a 

GIS environment.  

 

Exposure level estimation is required for each route in order to integrate the model with 

other components of the PEACOX project. The original exposure model (Landuse regression 

model) provides exposure concentration along the route; however, a new derived factor 

‘Dose’ may be required for rating the routes. The dose will indicate the level of exposure and 

it is the amount of pollutant that someone inhales during travel, and thus, it is a function of 

exposure concentration of a pollutant, travel time and inhalation rate. At the second level, 

the technique was determined to calculate the exposure rating by following equation 

(2): 

                                     ;    (2) 

Here, D=dose (µg); = Time factor (unitless); = Inhalation rate (m3/hr) based on 

mode; time in hour; and = µg/m3 

 

The dose will be calculated for each alternative route. The total value calculated from 

different modes provides the possible dose for each route. Although the outcome of the 

modeling will provide dose, the value will be expressed for the users as a band score. The 

level of concentration will be given in a scale rating where ‘A’ will indicate excellent travel 

environment. Similarly, ‘B’ refers ‘Good’, ‘C’ indicates ‘Average’, ‘D’ as ‘Poor’, and ‘E’ refers 

‘Unhealthy’ conditions. While there will be a number of alternative routes between an origin 

and destination, dose (µg) for each alternative will be calculated and lower dose will be 

rated as ‘A’ and so on. 
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2.2.3 Selection of the pollutant 

PM10 was selected for this task as a generic pollutant. Several reasons exist to justify 

considering PM10 as a representative pollutant of air quality. PM is a known source 

pollutant in traffic emissions as well as originating from re-entrained dusts, brake and tyre 

wear, sea spray, combustions, etc. PM is one of the main pollutants of concern in Ireland as 

well as in the EU and is monitored routinely by local governments across the EU. 

2.2.4 Data Sources  

A large quantity of data has been collected in order to build exposure models for Vienna and 

Dublin. The sources of data include: 

 Environmental Protection Agency (EPA, 2012),  

 umweltbundesamt (umweltbundesamt, 2013),  

 Dublin City Council,  

 Met.ie,  

 Central Statistics Office (CSO, 2012),  

 Trinity College Dublin (internal source), 

  Dublinked (Dublinked, 2012),  

 Central institute for meteorology and geodynamics, Vienna, Austria (ZAMG, n'd),  

 GADM database of Global Administrative Areas (GADM, 2012),  

 Geofabrik GmbH (GmbH, 2012),  

 European Environment Agency (EEA, 2012a),   

 CGIAR (CGIAR, 2012). 

 Overview of the data for lead model  2.3

The concept of “Lead Model” has been included to avoid duplication of the same type of 

information that has been generated in the building of Vienna Model. Details of the Dublin 

exposure model have been included here in sections 3 to 5. This model is then followed by 

the development of the Vienna Model. 
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2.3.1 Geographical coverage of the Dublin Model (Lead model) 

The geographical coverage of the Dublin city area is approx 115 sq.km. This area is under the 

jurisdiction of the Dublin city council (Figure 13). 

 

 

Figure 13 Dublin City 

Source: DCC 

 

2.3.2 Air Quality monitoring stations and monitoring data  

There are almost 15 Air Quality monitoring stations (both temporary and permanent) in the 

greater Dublin area (Figure 14). However, only some of them are useful for building the 

exposure model due to their longer temporal coverage of data. 

Not to Scale 
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Figure 14 Air Quality Monitoring stations in Dublin City 

Source: EPA 

The number of Air Quality monitoring stations where PM10 data is available for LUR model 

was seven: Ballyfermott, Coleraine Street, Knocklyon, Marino, PhoenixPark, Winetavern and 

Ringsend (highlighted in Figure 15). There are also three weather monitoring stations 

available in this area: Phoenix park, Casement at North and Dublin airport. 

Not to Scale 
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Figure 15 Air Quality and Weather monitoring stations in Dublin City 

2.3.3 Response and explanatory variables  

The following variables were used to develop the regression equation: 

Weather: 

 Rainfall (Daily total-2007-2009) 

 Wind direction (in Degree-2007-2009) 

 Radiation (Daily Average-2007-2009) 

 Stability index (Daily-2007-2009) 

 Wind speed (Daily Average-2007-2009) 

 Temperature (Daily Average-2007-2009) 

 Humidity(Daily Average-2007-2009) 

 Dew Point (Daily Average-2007-2009) 

 

Physical Parameter: 

 Distance from Coast (in km) 

 Pollutant’s distance from the monitors (in km) 

 Pollutant Angle(in Degree) 

Not to Scale 

Legend 

Weather Monitoring Stations 

Air Quality Monitoring stations 
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 Population Number (2007-2009, estimated)  

 Housing Stock (2007-2009, estimated) 

 Road Length (in km, 2011) 

 Digital Elevation Model (DEM)/Altitude (90m at the equator) 

 Road types (Motorway and/or with link, Trunk and/or with link, Primary and/or with 

link, Secondary, Tertiary) 

 Land use type (commercial and open space, from land cover data, 2006) 

2.3.4 Data management and processing  

 Data pre-processing and selection of data type: 2.3.4.1

ARCGIS, SPSS and Excel softwares were used to extract and process data for modelling. 

Landuse:  

The considered GIS dataset had a predefined land use category. To use these data for 

modelling, several land use categories have been merged into groups. The land use data has 

been recoded based on their impact on exposure concentration. Thus, two categories have 

been identified that have spatial positive and negative relationships with the exposure 

concentration.  

 Industrial and commercial land use   

 Open Space and water body ( Predefined categories were: Intertidal flats, Land 

principally occupied by agriculture with significant areas of natural vegetation, 

Pastures, Non-irrigated arable land, and Green urban areas) 

 

PM10 Data: 

As the data was limited in terms of monitoring station numbers, it was decided to use panel 

data to achieve better results. However the following assessment shows that many years of 

data were also missing. If we consider the data availability on the monitoring stations for the 

period 2007-2009, this gives the best available option (2008-2010) to develop the LUR 

Model.  
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SL. Monitoring Sites for 

Air Quality (PM10) 

Data Available Period 2007-2009 Period 2008-2010 Resolution 

1 Ballyfermott * 2003-2010 - - Daily 

2 Blanchardstown 2008-2009 2007 2010 Daily 

3 Coleraine Street * 2001-2008 2009 2009,2010 Daily 

4 DunLaoghaire 2008-2010 2007 - Daily 

5 Knocklyon 2008 2007,2009 2009,2010 Daily 

6 Marino * 2001-2008 2009 2009,2010 Daily 

7 PhoenixPark * 1996-98, ‘01-10 - - Daily 

8 Rathmines * 1996-98, 2001, 
‘03-05, ‘07-10 

- - Daily 

9 Tallaght 2008-10 - - Daily 

10 Winetavern * 2001-2010 - - Daily 

11 Ringsend * 2009-10 2007,2008 2008 Daily 

Interpretation 8 Missing years 8 Missing years  

*Within study area. 

Table 6 PM10 data availability in Dublin City 

 

The following table (7) outlines the average exposure concentration is high in the central 

areas (Coleraine Street and Winetavern street) and lowest at peripheries (Phoenix Park) in 

Dublin as expected. 

 

Station 

2007 2008 2009 

Minimum  
µg/m

3
 

Maximum  
µg/m

3
 

Average  
µg/m

3
 

Minimum  
µg/m

3
 

Maximum  
µg/m

3
 

Average  
µg/m

3
 

Minimum  
µg/m

3
 

Maximum  
µg/m

3
 

Average  
µg/m

3
 

Ballyfermott 2.64 78.47 14.82 2.50 43.19 11.64 1.53 46.10 12.44 

Coleraine 4.31 75.28 18.43 4.58 93.47 18.54 - - - 

Rathmines 1.20 87.92 16.69 1.00 101.30 16.91 2.36 59.58 14.74 

Marino 1.67 74.31 13.41 2.50 75.00 12.62 - - - 

PhoenixPark 1.53 66.19 11.72 1.39 59.44 10.74 2.08 38.89 10.19 

Ringsend - - - - - - 5.20 36.52 14.40 

Winetavern 3.19 93.47 18.30 1.69 82.36 17.49 1.39 55.83 17.29 

Table 7 PM10 in different monitoring stations (2007-2009) 

Wind Index: 

Wind index is a strong determinant of pollutant concentration. The wind index has been 

calculated (Chen et al., 2010) based on equation (3): 
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 ;   (3) 

Where, Wind Index=  ; ø = Euclidian direction from the nearest major road to monitoring 

site;   = Wind direction in respect of true north 

 

Stability Class 

Stability class refers to the state of the atmosphere that is resisting or enhancing vertical 

motion. Different stability states can be categorised based on wind speed and solar 

radiation. Stability class for Dublin was adopted here as an additional explanatory variable. 

 

Weather data source selection  

Weather data from Phoenix Park has been used primarily for model development, except for 

solar radiation and wind data. Data from Dublin airport station has been used for these 

latter two weather variables. Missing data in Phoenix Park have been replaced using Dublin 

airport station’s data. The following Table 8 shows the variation of the weather data used in 

the model. 

Weather Variables 

2007 2008 2009 
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Temperature (C) -.16 17.77 10.25 -.74 17.55 9.77 -.90 18.29 9.79 

Humidity(%) 61.88 98.67 82.95 63.50 99.42 83.48 62.96 99.29 84.99 

Dew Point (C) -3.35 14.87 7.31 -2.71 14.73 6.92 -4.42 16.44 7.21 

Wind speed (m/s) 1.52 13.95 5.66 1.78 14.34 5.94 1.22 14.04 5.68 

Radiation (W/m
2
) 158.61 1.02 51.20 2.47 113.90 33.15 1.09 123.41 38.20 

Rainfall (mm) .00 51.60 - .00 58.70 - .00 38.80 - 

Stability Class 4.00 5.00 - 4.00 5.00 - 4.00 5.00 - 

Wind Index .00 1.00 .40 .00 1.00 .40 .00 1.00 .36 

Table 8 Weather variables in Dublin Area (2007-2009) 

 

Population and housing stock 
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There was no data available for housing stock and population for the period of 2007-2009 

for the areas of interest. However, the Census data were available for 2011 and 2006 for 

population and housing stock and thus simple extrapolation has been used for estimating 

data for 2007, 2008 and 2009. The resolution of the data is at the small area level (lowest 

census boundary for Irish database). 

 Data extraction and sorting: 2.3.4.2

PM and weather data have been sorted in Excel software, whereas spatial data has been 

extracted in a GIS environment. Different overlay data management tools, and spatial 

analysis tools have been deployed to obtain data. To get information around the Air Quality 

Monitoring stations buffer operations was used in GIS environment. A buffer in GIS is a zone 

around a point measured in units of distance. The distance of the buffers for each attribute 

(e.g. Population, road length) was determined based on relevant literature review and site 

characteristics. The concept captures the physical properties of the areas that might have an 

influence on the PM10 concentration in the air quality monitoring stations. The following 

buffer sizes (Figure 16) were considered to extract data from GIS shape files: 

 Population Number/ Housing Stock/ Altitude --- 500m 

  Road Length                  ---- 100m, 350m, 750m 

 Land use Area according to type                 ----1000m 
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Figure 16 Different buffer sizes around the Air Quality monitors in Dublin 

 

Population and housing stock for buffers have been calculated based on densities of 

population and housing stock in relevant small areas and the area covered by the buffer 

boundary. The proportions of buffer area were multiplied by the density of the 

corresponding small areas to determine population and housing stock for the year 2011 

(Table 9). Later, back projection was conducted using a simple growth factor for determining 

the values for 2007-2009 at each station. However, population and housing stock have been 

considered constant for the phoenix park area (unpopulated national park). 

NAME 

Demographic Variables (500m buffer) 

Housing Stock  2011 Population 2011 

Rathmines 5681 9295 

Ballyfermot 2825 7184 

Ringsend 917 2422 

Winetavern Street 9698 18151 

Coleraine Street 8663 16484 

Phoenix Park 292 1039 

Marino 2438 4472 

Table 9 Demographic Variables within 500m buffer 
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The land use and transportation variables around each station are given in tables 10 and 11. 

 

Landuse Variables B
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Coast Distance in km 9.50 2.79 4.17 .96 8.20 .20 3.05 

Altitude average in meter (500m) 41.85 14.38 27.09 13.47 52.94 4.53 12.15 

Commercial area in Sq.km(1000m) .66 .02 .00 .04 .00 .25 .39 

Open Space area in sq. km(1000m) .08 .29 .00 .29 1.96 .02 .06 

Table 10 Values of land use variables around each monitoring station 

 

Transportation variables B
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Major Road length in km(100m) .00 .19 .18 .35 .00 .40 .44 

Major Road length in km(350m) 1.70 1.84 1.26 1.43 .00 1.28 4.11 

Major Road length in km(750m) 5.17 14.09 4.61 6.27 1.43 4.36 18.76 

Minor Road length in km (350m) 3.17 2.65 2.53 2.73 1.10 1.95 4.14 

Minor Road length in km (500m) 6.14 6.36 5.04 4.86 2.47 2.86 8.15 

Nearest Major Road Distance (km) .18 .26 .06 .04 .53 .05 .12 

Table 11 Values of transportation variables around each monitoring station 

 

 Setting data for modelling 2.3.4.3

There were 7673 observations available for building the model. However, due to absence of 

data in some variables, only 5535 observations were taken into account. 

 LUR modelling for Dublin  2.4

2.4.1 Land use regression models  

The following important assumptions were made in the LUR model: 
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 The physical characteristics of the seven Air Quality monitoring sites are a good 

representation of the whole area. 

 The land use and elevation data have been considered stationary over the years, 

whereas population and housing stock number have been assumed as having a 

constant growth rate.     

To develop the LUR model the analysis was performed using R – statistical software. Having 

the limitation of the number of routine monitoring sites and the number of observations, a 

deviation has been used from the traditional approach of building an LUR model. For model 

validation common approaches were either leaving one station and carry out the cross 

validation for (n-1) times, or leaving a certain percent of the data for validation and establish 

the model using the rest of the data. Here, a few models have been developed at the initial 

stage and thus, best fitted models were redeveloped again with a certain percentage of the 

dataset and thus, validated against the rest of the dataset. The best performed model was 

then selected. The first model (M1) was developed with simple multivariate linear regression 

(Fehler! Verweisquelle konnte nicht gefunden werden.) with all the available explanatory 

variables.  

 

Table 12 Regression Model Output (Model1) 

The model shows an adjusted R-squared of 0.35. That means the model can explain 35% 

variability of the dataset. However, this model provides two insights: some variables have 

illogically negative correlation (e.g. Commercial area should be an anthropological source of 

PM10) which might produce unrealistic results if chosen; secondly, four of the variables were 
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not defined because of singularities i.e. an extreme form of multicollinearity/perfect linear 

relationship exists between variables and these can be replaced. Therefore, this provides an 

understanding that, there is an option for choosing the best combination of explanatory 

variables in the model. If negatively correlated variables were retained, the model could 

produce negative values if other variables (those having a higher impact on the model) are 

silent or have “0” values (e.g. Open space). 

 

Before choosing the best combination of explanatory variables, another innovation has been 

used in model M1. Two dummy variables have been selected for the model, namely seasons 

and days of the week. The following table (13) provides grounds for choosing the first 

dummy variable. Although there is less variation of average wind speed across the seasons, 

the other two variables show significant variation. Higher rainfall reduces the PM10 

concentration in the air, on the other hand, people operate solid fuel heating appliances, 

which in turn may cause an increase in emitted PM10 on cold days. In addition, the traffic is 

one of the primary sources of PM10 and the traffic volume varies according to the days of the 

week, e.g. weekdays vs. weekends. This provides the logic for choosing the dummy variable 

for days. Previous studies, (Chen, et al., 2010) for season (only) and (Maynard, A Coull, 

Gryparis, & Schwartz, 2007) for days (only) used such division in their models. Here,  dummy 

variables have been used to make a better fit of the model with the data set. The model 

thus, yields an adjusted R-squared 0.37, an improvement of 2% extra explanatory power.  

Subsequently, another statistical technique has been deployed as PM10 data was not 

normally distributed, whereas, regression assumes PM10 data should follow a normal 

distribution. To create PM10 data as normally distributed, natural log transformation of PM10 

was considered in the model. Then log-level analysis has been performed, which yielded an 

adjusted R2 of 0.43.  

Seasons  

Average Temperature (C)  Average Rainfall (mm) Average Wind speed (m/s) 

2007 2008 2009 2007 2008 2009 2007 2008 2009 

Summer* 13.97 14.25 14.56 3.99 3.93 2.80 4.97 5.34 5.12 

Winter 9.00 8.01 8.13 1.53 2.26 2.35 5.89 6.17 5.88 

Difference 4.97 6.25 6.43 2.47 1.66 .44 -.91 -.83 -.76 

*June,July and August (according to met.ie , http://en.wikipedia.org/wiki/Summer) 



27/01/2013 

 

 

Page 35 / 59 

 

Table 13 Seasonal environmental data 

 

Following the log-level model, the best logical combination of input variables (Fehler! 

Verweisquelle konnte nicht gefunden werden.) has been chosen for model M2 as below: 

 

Table 14 Regression Model Output (M2) 

 

The model could be rewritten in the following form for better understanding: 

 
 

 

The model’s coefficient for dummy variables shows conformity with the logic for using 

dummy variables. Winter Mondays get 26% excess PM10 over the summer Mondays. On the 

other hand, coefficients for weekends are comparatively lower than the weekdays, 

especially on Sunday. For Saturday, the model shows slightly higher PM10 than Monday. 

 

Among the other variables, the coastal distance variable shows a negative correlation, which 

is completely logical in the context. A study (Yin et al., 2005) in Ireland shows that the 

primary source contributing to PM10 is marine aerosol (NaCl). An observation from the past 

data (2007-2009), monitoring sites (Marino, Ringsend and Dun Laoghaire) showed that there 
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is no significant reduction of PM10 being close to the ocean (Figure 17 Average daily PM10 

concentration (2007-2009) in monitoring stations). 

 

Figure 17 Average daily PM10 concentration (2007-2009) in monitoring stations 

 

Several techniques (Figure 18 Time series data for PM10 vs. PM10 without outliers Figure 19, 

Figure 20) have been further used to improve the log-level model. These included:  

 

Model 3: Limiting the PM10 concentration data to within two standard deviations. The treatment of 

PM10 in this way has been mentioned as PM10_2SD. Here, standard Deviation; has been calculated for 

each station and each year.  

Model 4: 3-days moving average for PM10_2SD 

Model 5: 3-day weighted Moving average (Weight:.5 for the day ’ 0’, .3 for for day-1, and .2 for day-2 

) for  PM10_2SD.  

Model 6: Exponential Moving average with .6 smoothing factor for PM10_2SD 

Model 7: Exponential Moving average with .3 smoothing factor for PM10_2SD 

 

The idea here was to capture any long term trends, avoiding short term fluctuations as the 

resolution of the explanatory variables was either static over the area (weather data), and 

no land use variable was similar to the resolution of daily PM10 data. 
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Figure 18 Time series data for PM10 vs. PM10 without outliers 

 

 

Figure 19 Time series data for PM10 without outliers, 3-day moving average and 3-day weighted moving 

average 

 

 

Figure 20 Time series data for PM10 without outliers and exponential moving average 

 

The models yielded the following R squared values (Table 15). This means the reduction of 

short-term fluctuation of  PM10 data matched better with the low resolution of explanatory 

variables. 
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Models 3 4 5 6 7 

Adjusted R squared 0.44 0.48 0.49 0.50 0.54 

Table 15 Performance of the Models 

 

The target values outlined in Section 2.2 highlighted a desirable R2 adjusted figure of 50%. 

Here models 6 and 7 meet or exceed these performance criteria. 

2.4.2 Validation of LUR Model  

To validate and to choose the best fitted model, cross validation has been performed. 

Statistical tests like the coefficient of determination (R2) and Root Mean Squared Error 

(RMSE) were measured (Table 16) to ensure the calibrated model’s efficiency. Using SPSS 

software, 15% of the total observation was kept for validation and the rest of the 85% data 

was used to reproduce best performed models: Model 2 (best fitted model before 

tempering the data), Model-6 and Model-7. 

 

Indicator Model-2 Model-6 Model-7 

R-squared (Model) 0.43 0.50 0.54 

R-squared (Validation) * 0.46 0.34 0.30 

RMSE* 7.65 9.02 9.23 

RMSE (Log)* 2.03 2.19 2.22 

Pearson r* 0.67 0.58 0.54 

R-sqr* 0.46 0.34 0.30 

*validation with 15% data. 

Table 16 Model validation 

The validation shows that reproduced Model-2 although having a comparatively lower fit, 

yields a good R squared in the validation process. This model was then further examined 

using a normality test (Figure 21). 
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Figure 21 (a) showed an unbiased and homoscedastic relationship between residual and 

fitted values, while Figure 21 (b) shows the residuals were normally distributed and 

scattered around the line. 

2.4.3 Model Optimisation  

The log-level model was further optimised using a neural network (NN) approach  in Matlab. 

As the data was highly nonlinear in nature, a neural network-NN (Figure 22) has been 

applied in this case.  

 

 

 

 

 

 

Here, the Levenberg-Marquardt backpropagation technique has been applied. After several 

iterations, the network architecture (Figure 23a) that performed best was selected. The 22-

40-1-1- combination yielded following result (Figure 23b). 

 

 

Mathematically, the neuron j can be described as follows 
 

 
Where x1,x2,……,xp are the input signals, wpq is the connection weight from p in layer l to 

neuron q in layer l+1, uq is the linear combiner output due to the input signals, bq is the 

bias,   (….) is the activation faction and aq is the output signal of the neuron . 

 

Figure 21 Normality Test (a. Residual vs. fitted value; b. Normal Q-Q plot ) 

Figure 22 Typical Neural Network Structure (Dunne & Ghosh, 2011; Haykin, 1994) 
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Figure 23 Neural network (a. Architecture, b. Model performance) 

 

The mean square error was found at validation was 0.14. (RMSE 0.374) in log scale. In 

normal scale the error was 1.45, a significant improvement from the previous 7.65 RMSE 

mentioned in Table 16. Figure 24 demonstrates the improved performance obtained using 

the NN methodology. 

 

Figure 24 Performance of the Neural Network 
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 Exposure concentration for Dublin roads  2.5

2.5.1 Introduction  

To generate exposure concentration at route level, exposure mapping is necessary. This can 

be obtained using the kriging geo-statistical interpolation technique. However, as the 

number of the monitoring stations was low, it was necessary to extrapolate data for some 

unmonitored sites (sample points) using the regression equation. For this reason grouping 

analysis was performed to understand the physical setting of the study area. This will 

provide an indication of the sample number and location for each group. 

2.5.2 Exposure mapping 

 Grouping analysis 2.5.2.1

Based on the physical characteristics (Population density, Housing Stock density, Major road 

density, Land cover and Altitude) of the area, the following eight classified areas (Figure 25) 

have been determined for Dublin city. 

 

Figure 25 Eight optimal groups for Dublin 

Figure 26 (Pseudo F- statistics) shows that the eight groups are the optimum number for this 

area according to the given criteria. 



27/01/2013 

 

 

Page 42 / 59 

 

 

Figure 26 Optimal Group Test 

 PM10 estimations for new sample sites 2.5.2.2

Landuse variables like distance from the coast, altitude, major road within 350m, wind index, 

nearest major road, open space for the relevant buffer sizes were derived from the GIS data. 

In addition, average weather conditions were calculated based on weather data from 2007 

to 2009. 
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Monday 14.42 82.30 11.22 4.90 194.98 63.47 2.44 4.02 

Tuesday 14.72 80.95 11.22 5.29 209.81 73.30 3.20 3.98 

Wednesday 14.42 83.19 11.42 5.23 208.58 69.93 3.82 4.00 

Thursday 13.86 83.85 11.00 5.18 195.17 66.38 3.01 4.00 

Friday  14.04 82.70 10.93 5.19 199.40 66.19 3.42 4.00 

Saturday 14.27 83.65 11.34 5.27 213.83 59.61 6.56 4.03 

Sunday 13.98 82.36 10.82 4.99 197.02 60.79 3.10 4.02 

W
in

te
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Monday 8.09 84.13 5.40 6.08 193.59 32.47 1.58 4.06 

Tuesday 8.18 84.46 5.55 5.83 196.65 32.59 2.02 4.07 

Wednesday 8.22 84.71 5.64 5.89 203.19 30.75 2.25 4.06 

Thursday 8.78 83.87 6.05 6.31 206.53 33.03 2.15 4.05 

Friday  8.50 84.25 5.86 5.81 210.37 30.92 1.94 4.16 

Saturday 8.74 83.46 5.90 6.01 205.26 33.18 2.02 4.09 

Sunday 8.27 84.11 5.59 5.91 193.76 31.06 2.28 4.06 

Table 17 Average weather condition 
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Both landuse and environmental data were input to the optimised model in mathlab and 

PM10 data for 32 sites were derived for seven days for each season (example, Figure 27). 

 

 

Figure 27 Predicted PM10 over the week in summer 

 

 Spatial Auto-correlation 2.5.2.3

Moran's I test was conducted which is a measure of global spatial autocorrelation. Negative 

values indicate negative spatial autocorrelation. Values range from −1 (indicating perfect 

dispersion) to +1 (perfect correlation). A zero value indicates a random spatial pattern. Most 

of the cases Moran’s I is near to 0 which indicates the patterns do not appear to be 

significantly different from random. There is no alarming outcome except for a summer 

Wednesday. In this case, given the z-score of 2.43, there is less than 5% likelihood that this 

clustered pattern could be the result of random chance. 
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1.709 1.172 2.428 1.091 1.595 1.121 1.236 0.693 0.643 1.329 0.870 0.752 0.214 -0.136 
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0.087 0.241 0.015 0.275 0.111 0.262 0.217 0.488 0.520 0.184 0.384 0.452 0.831 0.892 

*Z-scores in which values greater than 1.96 or smaller than −1.96 indicate spatial autocorrelation that is 

significant at the 5% level. 

Table 18 Moran’s I test 

 

 Kriging  2.5.2.4

Kriging was used to develop the exposure concentration map over the city area (Example: 

Figure 28). The Kriging technique was used to interpolate the value of a random field at an 

unobserved location from observations of its value at nearby locations. 

 

Figure 28 PM10 Exposure Map for Dublin area (Summer-Monday) 

 

The exposure map was then overlapped with the road network. In order to obtain the daily 

exposure concentration on every road. To achieve this, the road layers were first converted 

to point layers using XTools Pro 9.1 which generated 59262 points on the center line of the 
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roads (Figure 29). PM10 concentration for each point has been extracted from the exposure 

map (Figure 30). Having co-ordinates for each point this output can be used for the route 

choice purposes, or route level information can also be used for route choice (Figure 32). 

 

  

 

Figure 29 Exposure map with road network (line) 

Figure 30 Exposure map with road network (Points) 
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 Exposure model for Vienna 2.6

Vienna is Austria's capital city, with a population of about approximately 1.731 million. The 

area covered by the Vienna boundary is 414.6 km² which is approximately four times higher 

than the area of Dublin. 

 

The methodology of the exposure modelling remains the same for Vienna. The 

dissemination of air quality information is excellent in Vienna. Air Quality monitors in Vienna 

(Figure 31) provide real time PM10 concentration. 

 

 

Figure 31 Air Quality monitoring sites in Vienna 

Source: Umweltbundesamt 

 

The source for values of the response variable (PM10) is Umweltbundesamt . The latitude 

and longitude for the PM10 monitoring stations have been taken from the 

Umweltbundesamt website and inputted in the GIS environment. The administrative 

boundary has been taken from the GADM database of Global Administrative Areas (GADM, 

2012). Figure 31 shows a few of the monitors are just outside the Vienna city boundary. 
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These monitoring sites have also been considered to capture more spatial information about 

Vienna’ exposure concentration dynamics.  

 

Figure 32 Air Quality monitoring sites in Vienna within the city boundary 

 

Station 

2011 2012 

Minimum  
µg/m

3
 

Maximum  
µg/m

3
 

Average  
µg/m

3
 

Minimum  
µg/m

3
 

Maximum  
µg/m

3
 

Average  
µg/m

3
 

A23/Rinnböckstraße 7.0 148.1 34.44 5.7 98.9 25.98 

AKH, Südringweg 4.2 123.7 26.72 4.0 89.6 23.16 

Belgradplatz 4.2 145.2 33.87 4.7 99.9 27.33 

Floridsdorf 
Gerichtsgasse 7.9 135.4 31.25 8.0 154.5 27.45 

Gaudenzdorf 7.1 136.2 30.51 6.3 106.7 25.57 

Kaiser Ebersdorf 3.6 131.1 29.36 3.3 96.3 22.66 

Kendlerstraße 6.7 128.3 30.35 4.6 115.4 26.47 

Laaerberg 5.9 130.6 27.99 4.2 95.4 23.66 

Liesing 4.7 131.7 31.62 4.3 112.1 27.30 

Lobau 5.3 125.0 25.99 5.3 87.6 20.28 

Schafbergbad 5.2 106.0 24.54 5.7 147.6 21.34 

Stadlau 4.2 122.9 28.28 5.0 132.7 24.88 

TaborstraBe 5.1 126.4 29.35 5.0 90.9 24.20 

       Source: Municipal government of Vienna 

Table 19 PM10 in different monitoring stations (2011-2012) in Vienna 
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2.6.1 Deviations from the lead model 

There is no significant deviation in the modelling process from the one used for Dublin city. 

The selection of data was performed based on the availability. Explanatory variables used in 

the Vienna model were similar to Dublin (Table 20). However, the resolution of the dataset 

was not always the same as the lead model.  

 

Sl no Variable Sl no Variable 

1 
Latitude+ Longitude 

10 
Average Population density within 500m 
(persons/km2) 

2 Open area in Sq.km(1000m) 11 Average Altitude in m (1000m) 

3 
 All type of Road length in km(350m) 

12 
Average Population density within 1000m 
(persons/km2) 

4 All type of Road length in km(750m) 13 Minimum Daily Temperature(C) 

5 Major Road length in km(350m) 14 Maximum Daily Temperature(C) 

6 Major Road length in km(750m) 15 Wind speed (m/s) 

7 Average Altitude in m (500m) 16 Precipitation (mm) 

8 Nearest Major Road Distance (km) 17 Average Daily Temperature (C) 

9 No. of Building Centroid within 1000m 18 Industrial area in Sq.km(1000m) 

Table 20 Explanatory variables for Vienna Model 

 

2.6.2 Model Selection and optimisation  

Models for Vienna (Table 21) have been developed followed by the same methodology 

described in section 4.1.  

Location 
Air 
pollutant 

PM10 Model for Dublin and Vienna (variables 
<=.001 Significance) R2 F P SE DF 

Vienna 

Primary 
Model 

LnY=27.249077+0.021683X1-0.053404X2-
0.045463X3-0.020775X4-0.361544X5-
0.110482X6+0.029500X9-0.031520X12 0.34 605.2 

< 2.2e-
16 

0.504
5 9325 

With 
Seasonal 
Impact 

LnY=27.084983+0.021706X1-0.047978X2-
0.045630X3-0.019589X4-0.361544X5-
0.110482X6+0.029500X9-
0.031520X12+0.153344Winter 0.35 553.8 

< 2.2e-
16 

0.501
9 9324 

Final 
Model: 
With 
Seasonal 
and Daily 
Impact: 

LnY=27.055656+0.020783X1-0.047124X2-
0.046071X3-0.019863X4-0.361544X5-
0.110482X6+0.029500X9-
0.031520X12+0.147878Winter+0.095848Tuesday
+0.129733Wednesday+0.159774Thursday+0.050
301Friday-0.013376Saturday-0.083362Sunday 0.36 356.9 

< 2.2e-
16 

0.495
7 9318 
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 The model with high R-squared value was chosen. That equation can be rewritten as below:  

Model with 

variable 

names 

LnY=27.055656+0.020783MindailyTemp-0.047124Max.dailyTemp-0.046071WindSpeed-

0.019863DailyPrecipitation-0.361544(Latitude+Longitude)-

0.110482OpenAreaSq.km(1000m)+0.029500MajorRoadlengthinkm(350m)-

0.031520NearestMajorRoadDistance(km) 

+0.147878Winter+0.095848Tuesday+0.129733Wednesday+0.159774Thursday+0.050301Frida

y-0.013376Saturday-0.083362Sunday  

Table 21 Panel Data Models for Vienna 

 

Weather parameters that exist in the final model are highly non-linear in nature and have 

complex interactions among explanatory variables. So, non-parametric regression and neural 

network fits here. Using of panel data provides an additional benefit of using non-parametric 

regression, as such the methodology requires a large number of observations to define the 

structure of the model first and then make estimatations. 

 

Non-parametric regression in the form of locally weighted scatterplot smoothing (LOWESS) 

has been deployed through XLSTAT 2013. The LOWESS method combines multiple 

regression models in a k-nearest-neighbour-based meta-model. To define the structure of 

the model, smoothing parameter value (k nearest neighbours: % = 50) and the degree of the 

local polynomial as 1 is defined). Tricube weight function has been used as kernel function. 

On the other hand, the log-level models were also optimised using a neural network (NN) 

approach in Matlab. Here, the Levenberg-Marquardt backpropagation technique has been 

applied. After several iterations with different number of hidden neurons (10, 25, 30, 40, 50, 

60), the network architecture that performed best was selected. The combination for “input-

hidden layers- output” was 17-50-1-1 for Vienna yielded consistent satisfactory results. 85% 

data were devoted to training, 10% for validation and 5% for testing the model, and run the 

models for consecutive five times. The MATLAB Neural Network Toolbox has been applied to 

perform this analysis. From the below table, Non-parametric regression was found to 

consistently yield better results. 
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Model description Vienna Model description Vienna 

Stage and 
Performance 

Multiple 
Linear 

Regressi
on 

Model 

Non-
paramet

ric 
Regressi

on 
Model 

Neural 
Netwo

rk 
Stage and 

Performance 

Multiple 
Linear 

Regressi
on 

Model 

Non-
paramet

ric 
Regressi

on 
Model 

Neural 
Netwo

rk 

Full Model 

R2 0.36 0.51 --- 

 
    

MS
E --- 0.19 --- 

Ru
n 1 

Calibrati
on 

r' --- --- 0.9 

Ru
n 4 

Calibrati
on 

r' --- --- 0.9 

R2 0.38 0.51   R2 0.37 0.5   

MS
E --- 0.19 0.07 

MS
E --- 0.19 0.07 

Validatio
n 

r' 0.59 0.71 
88 
(.77)* 

Validatio
n 

r' 0.6 0.71 
.85 

(.91)* 

R2 0.35 0.51 --- R2 0.36 0.51 --- 

MS
E --- 0.16 

.08 
(.19)* 

MS
E --- 0.16 

.11 
(07)* 

Ru
n 2 

Calibrati
on 

r' --- --- 0.91 

Ru
n 5 

Calibrati
on 

r' --- --- 0.92 

R2 0.37 0.51   R2 0.37 0.51 --- 

MS
E --- 0.19 0.06 

MS
E --- 0.19 0.06 

Validatio
n 

r' 0.6 0.73 
.87 

(.82)* 

Validatio
n 

r' 0.57 0.7 
0.85 

(.86)* 

R2 0.36 0.53 --- R2 0.32 0.49 --- 

MS
E --- 0.16 

.10 
(.14)* 

MS
E --- 0.17 

0.1 
(.1)* 

Ru
n 3 

Calibrati
on 

r' --- --- 0.87 

  

R2 0.37 0.5 --- 

MS
E --- 0.19 0.09 

Validatio
n 

r' 0.6 0.71 
.76 

(.84)* 

R2 0.36 0.51 --- 

MS
E --- 0.15 

.17 
(.11)* 

* 5% testing data result. 

Table 22 Model validation and performance analysis 

2.6.3 Estimation of exposure concentration for new points and Interpolation 

Similar to Dublin Model, 14 maps (seven days over the summer and winter) were produced 

for average PM10 concentration in Vienna. For this 25 extra points were selected randomly 

and the prediction was carried out for a total of 38 (25+13 fixed monitoring stations) points 
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in Vienna. Thus, kriging techniques were applied for seven days in summer and winter 

(example, Figure 33). 

 

Figure 33 Summer Friday and Winter Monday 

The exposure concentration was subsequently extracted to the points on the road links to 

maps. 

 Factor selection & Exposure Rating 2.7

As discussed earlier in the section 2.2, the dose for a trip will be identified through equation 

(2). For this, time factor and mode factors are needed to be identified. 

 

The time factor enhances the estimated average PM10 values, and mode factor provides 

scope to estimate dose for the travellers using different modes. The time factor has been 

calculated using hourly nitrogen oxide (NOx) values of five monitoring stations in Dublin, as 

there is a limitation of availability for hourly PM10 data. The daily concentration of NOx and 

PM10 has a r=.6 Pearson correlation, and that is comparatively better than with other 

pollutants (PM10 vs. NO was r=.51;  PM10 vs. NO2 was r=.58). The average hourly NOx values 

for each monitoring station was calculated for 2009, and the two peaks were observed in the 

Figure 34 for all the monitoring stations (the hourly distribution over the day also showed 

the same tendency as average hourly values). These peaks are consistent with the peak 

traffic periods mentioned in the emission report (deliverable D3.1), that is, fluctuation of 

emission concentrations is consistent with traffic level. Then six time factors were estimated 

from the ratio of average concentration values in different periods, and daily average 

concentration for each monitor. Time factors (Table 23) for six time periods were calculated 

taking the average of the ratios in six different periods of all monitors.  
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Figure 34 Average NOx concentration in the monitoring stations 

 

Serial No. Factor Name Time Period Time Factor 

1 Kick off factor 5am -6.59am 0.74 

2 Morning Peak Factor 7am-10.59am 1.35 

3 Settling Factor: Noon 11am-13.59pm 0.96 

4 Average Traffic Factor 14pm-15.59pm 0.96 

5 Evening Peak 16pm-18.59pm 1.16 

6 Settling Factor: Night 19pm-21.59pm 0.95 

7 Night factor 22pm-4.59am 0.66 

Note: Seven Time Factors (e.g. Peak and off-peak hour) have been derived based on the traffic situation in 

Dublin and assumed to be same in general for Vienna; Inhalitation rate has been taken from the literature (US 

EPA). 

Table 23 List of Time Factors 

 

The mode factor, that is the inhalation factor (Table 24) for each mode has been taken from 

US EPA 2009 (Exposure Factors Handbook: 2009 Update. EPA/60 0/R-09/052A.) 

Serial No Mode Inhalation factor 

1 Luas (Tram), Dart(Metro), Bus* 0.228 m
3
/hr 

2 Bike 1.620 m
3
/hr 

3 Car/Taxi 0.570 m
3
/hr 

4 Walk 0.720 m
3
/hr 

* Same as because the body movement is similar to the resting period while using these modes of travel. 

Table 24 List of Inhalation factor 
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All these factors were considered along with the average PM10 values to calculate dose for 

each type of mode users. The total value calculated from different modes provide the 

possible dose for each  route. Although the outcome of the modelling will provide dose, the 

value will be expressed for the users as a band score as outlined earlier. 

 

 Algorithm for PEACOX application 2.8

The algorithm developed for PEACOX was on the Java platform. This final algorithm has been 

focused on the link exposure calculation in figure 1 in realtime. The input and output were 

the main concern in this stage. The flowchart in figure 35 illustrates the final algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 Conclusion  2.9

The methodologies for trip-by-trip exposure have been developed for the given task of 

PEACOX project. PM10 has been chosen as generic pollutant for exposure modelling. The 

given task was first carried out for whole city areas by land use regression modelling and 

thus, the output was used to determine route level exposure. There was a challenge in 

developing an LUR model with limited spatial coverage of the monitors which was 

O-D Co-ordinates 

Call travel time 

information 

PM10 concentration 

database 

Time factor database 

Dose estimation for routes 

Rating of routes 

Mode 

detection 

Recommendation 

service Inhalation factor 

 

Figure 35 Exposure algorithm flowchart 
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confronted by using advanced modelling techniques. This limitation that was particularly 

prominent in Dublin was balanced by using data from the additional sites in longer periods. 

On the other hand, seasonal and daily variation has been added to increase model’s 

performance for both of the cities. The final MLR models in this study yield acceptable 

explanatory power for either city. The techniques for using exposure information for 

realtime route level have also been outlined clearly. The final version of the models for 

PEACOX project has been developed, and delivered in the Java platform with necessary 

adjustment for instantaneous application. 
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3. Glossary of Terms 

 

Air Pollutant: Anything emitted to the air which could have a detrimental 

effect on human health or the environment. 

 

Ambient Air:    The air located outside of buildings/ Outdoor air. 

 

Exposure:   The amount of contact that a person has with the pollutant. 

 

Land use:  The total of arrangements, activities and inputs undertaken in a 

certain land cover type. 

 

Neural networks/NN: It is often called as statistical black box; is composed of 

interconnecting artificial neurons that build mathematical 

models mimicking the properties of biological neurons. 

 

Particulate Matter10/PM10: Particulate matter is made up of many different compounds that 

has size of 10µm. 

 

Routine Monitoring Network: A collection of air monitoring equipment spread across an area 

whose readings are used to understand the Air Quality in that 

area. 

 

Solar radiation:   Radiation emitted by the Sun. 

 

Regression: In statistics, regression analysis is a technique for estimating 

the relationships among response and explanatory variables. 

 

Small Area:    The smallest area grouping used in  the Irish census. 

 

µg/m3:  1 µg/m3 means that for every cubic meter of air there is 1 

micro-gram of the pollutant present. 
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